ipe - r Package for Ideal Point Estimation

Michael Peress*

July 2021

*SUNY-Stony Brook, michael.peress@stonybrook.edu

1 Overview

ipe is an r package for ideal point estimation. The main algorithm optimizes a penalized maximum
likelihood objective function using limited memory BFGS and a trust region line search. Standard
errors are calculated using the asymptotic Hessian. The main algorithm works efficiently on dense
and sparse data matrices and can be used to estimate models with a very large number of parame-
ters. The package includes utilities for creating data matrices, estimating starting values, bridging
together multiple chambers, and visualizing and interpreting results. The methods included in
this package were primarily developed in Peress (forthcoming), though some methods were also
developed in Peress and Spirling (2010), Battista, Peress and Richman (2013), Peress (2013), and

Battista, Peress and Richman (Forthcoming).

1.1 Installation

ipe can be installed in r using the command:

source("https://sites.google.com/a/stonybrook.edu/mperess/install_ipe.r")

The package can the be loaded using the command:
library (ipe)

The most computationally intensive functions call ¢++ code compiled into a dynamic-link library
(DLL). Since DLLs are specific to the Windows operating system, these functions will not work
directly in other operating systems. It is possible to run these functions using Wine on a different

operating system, though this has only been tested on Linuz.

1.2 Model and Notation

Assume that data takes the form of an N xT matrix y with elements ,,¢+, where n denotes individuals
or voters and t denotes items or votes. Assume that y,; € {0, 1,2} where y,,; = 2 denotes a positive
outcome or yea vote, Yy, = 1 denotes a negative outcome or nay vote, and y,; = 0 denotes a
missing outcome or vote. Each individual is characterized by a,, € RP where D > 1 and each item
is characterized by a; € R and b; € RP. Let 6; = (as,b;). Assume that conditional on observing
an outcome (i.e. ynr # 0), we observe y,; = 2 with probability ®(a; + bja,) and y, = 1 with
probability 1 — ®(a; + bj«,), where these probabilities are independent across n and t. To avoid
confusion due to the similarity of the terms vote and voter, we will use the terms individual to refer
to the n index and item to refer to the ¢ index. Individuals parameters or ideal points refer to o,

and item parameters refer to (a, b) or ;.

2 Loading Data

2.1 Dense Data

ipe handles both dense and sparse data. Dense data is stored as a matrix. Each row of the matrix
represents an individual and each column represents an item. The elements of the matrix are 2
(indicating a positive outcome), 1 (indicating a negative outcome), and 0 (indicating a missing
outcome). The rows and columns of the matrix may be named, and if so, they should have unique

names.
Example 1 (Roll Call Voting in the California House).

This example loads data from the Representation in the America’s Legislature Project (Wright,
2007). Since the data is stored in matrix form, it can be loaded directly as a matrix. The values
representing a yea vote, nay vote, and missing vote can then be recoded to match the format used

by ipe. The data matrix can be formed using the r code,

datal <- read.delim(paste(dirl,"cah9900_rc.tab",sep=""))
Y <- as.matrix(datal[,6:2220]) # get the votes

Y <- Y + 1 # recode yea/nay

Y[is.na(Y)] <- O # recode NA

The rows and columns can be named as follows,

rownames (Y) <- paste(datal$first,datal$last,sep=" ")
colnames (Y) <- paste("CAH",1l:ncol(Y),sep="")

Party can be saved for future use,
party <- datal$pid

party [party::O] <- "Rp"
party [party::l] <— npn
party [party==2] <— nwn

2.2 Sparse Data

Sparse data is used to store ideal points in chambers where most of the votes are missing. Such a
situation is typical when the “chamber” is the result of bridging together many chambers. Sparse
data is stored as a list with named elements N, T, S, Nids, Tids, r, ¢, and v. The sparse matrix
is stored in row-column-value format (Saad, 2003). N and T should be the number of rows and
columns of the matrix. The vectors r and c¢ refer to the rows and columns of the entries of the
matrix, and are 0-indexed, meaning that 0 refers to the first row or column, 1 refers to the second
row or column, etc. v stores the values of the matrix, which can be 2 (indicating a positive outcome),

1 (indicating a negative outcome), or 0 (indicating a missing outcome). While the software allows

v to include 0, these should be excluded for efficiency reasons. If one includes all the Os from the
matrix, there will be no computational advantage to the sparse algorithms. The vector r, ¢, and v
should be all be of the same length, and this length should be supplied as S. Nids and T%ds should
be the (unique) row names and column names.

Occasionally, data that is dense (i.e. contains few missing votes) will be stored in a sparse

format. In this case, the data can be read as sparse, and then converted to dense data.
Example 2 (Roll Call Voting in the 90th Senate).

Though voting in a given session of the Senate is dense, Voteview stores the roll call data in a

sparse format. The following code loads roll call data for the 90th Senate as a sparse matrix:

datal <- read.csv("https://voteview.com/static/data/out/votes/S090_votes.
csv"

Y <- 1list ()

Y$Nids <- sort(unique(datal$icpsr)) # voter ids (icpsr code)

Y$Tids <- sort(unique(datal$rollnumber)) # vote ids

Y$r <- fmatch(datal$icpsr,Y$Nids) - 1 # O-indexed

Y$c <- fmatch(datal$rollnumber ,Y$Tids) - 1 # O-indexed

Y$v <- datal$cast_code # votes

YSv[Y$v!=1&Y$v!=6] <- O # missing votes (present, not voting, pair, etc.)

Y$v[Y$v==1] <- 2 # yeas

Y$v[Y$v==6] <- 1 # nays

Y$N <- length(Y$Nids) # number of voters

Y$T <- length(Y$Tids) # number of votes

Y$S <- length(Y$v) # number of non-missing entries in matrix

To check if the matrix is in a proper format, the function ipe_check_mat can be used:

ipe_check_mat (Y)

A return value of zero indicates that the matrix is in proper format. It is also possible to create a

sparse matrix by first creating a dense matrix and using the function ipe_dense_to_sparse:

Example 1 (continued).

Ys <- ipe_dense_to_sparse (Y)

The function ipe_sparse_to_dense has similar functionality for converting in the reverse direction.

Example 2 (continued).

Yd <- ipe_sparse_to_dense (Y)

2.3 Chamber Data Structures

A chamber object is a list with the following elements: Y (a dense or sparse matrix of the form
described in sections 2.1 and 2.2), name (the name of the chamber), and optionally, inddat, itemdat,
source, and member. If provided, inddat should be a data frame where each column indicates an
individual-specific variable (e.g. party) and where the number of rows is equal to N (the number
of individuals). Similarly, itemdat should be a data frame where each column indicates an item-
specific variable (e.g. the number of the bill the vote relates to) and where the number of rows is
equal to T' (the number of items). source and member are generated when a chamber is constructed
by merging a collection of chambers, as described below.

Chambers can be loaded or saved using the functions ipe_load_chamber and ipe_save_chamber.
The chamber object thus allows for a convenient way to save the response matrix along with
individual-specific and item-specific information. ipe_save_chamber takes a chamber object and
a file name, which should have the suffix “rds”. ipe_save_chamber is a wrapper for the function
save.list from the rlist package, which verifies the format of the data. The function ipe_load_chamber
takes in a file name and returns a chamber object. This is also a wrapper for a function from the

rlist package which verifies the format of the data.
Example 1 (continued).

The following example saves a chamber for later use:

chamber <- list ()
chamber$yY <- Y
chamber$inddat <- as.data.frame(party)

ipe_save_chamber (chamber ,paste (dirl,"calil.rds",sep=""))

The following code loads the saved data:

chamber2 <- ipe_load_chamber (paste(dirl,"calil.rds",sep=""))

The validity of a chamber object can be checked using the function ipe_check_chamber. The
function takes in a chamber object and returns an integer. Table 1 details the meaning of the
return values for ipe_check_chamber.

A collection of chambers is a list numbered 1, 2, ..., L, where L is the number of chambers and

each entry in the list is a chamber object.
Example 3 (1st through 113th Senate).

We can use the following code to get a list of chambers with votes, individual-level data, and names

for the chambers:

chambers <- 1list ()

for(cong in 1:113)

0 No Error

Y is missing (the entry Y should be present in the list)

Invalid entries in chamber (the list contains an entry other that Y, name, inddat,
itemdat, member, and source)

Y is not a valid vote matrix (ipe_check_mat returned an error when applied to Y)
Number of rows in inddat is not equal to N

Number of columns in itemdat is not equal to T

S U s W

Dense chambers should not have a source

Table 1: Return values for ipe_check_chamber.

print (cong)

flush.console ()

congl <- paste(rep("0",1*(cong < 10)),rep("0",1*(cong < 100)),cong
,sep="")

datal <- read.csv(paste("https://voteview.com/static/data/out/
votes/S",congl," _votes.csv",sep=""))

datal <- datal[datal$cast_code==1|datal$cast_code==6,] # drop the
missing votes

data2 <- read.csv(paste("https://voteview.com/static/data/out/
members/S",congl," _members.csv",sep=""))

Y <- 1list)

Y$Nids <- sort(unique (as.character(datal$icpsr))) # voter ids (

icpsr code)

Y$Tids <- paste(cong,sort(unique(datal$rollnumber)) , sep="_") #
vote 1ids

Y$r <- fmatch(as.character(datal$icpsr),Y$Nids) - 1 # O-indexed

Y$c <- fmatch(paste(cong,datal$rollnumber ,sep="_"),¥$Tids) - 1 #

O-indexed

Y$v <- datal$cast_code # votes

Y$v[Y$v!=1&Y$v!=6] <- 0 # missing votes (present, not voting, pair
, etc.)

Y$v[Y$v==1] <- 2 # yeas

Y$v[Y$v==6] <- 1 # nays

Y$N <- length(Y$Nids) # number of voters

Y$T <- length(Y$Tids) # number of votes

Y$S <- length(Y$v) # number of non-missing entries in matrix

idx <- fmatch(Y$Nids,as.character(data2$icpsr))

inddat <- as.data.frame(cbind(data2$bioname[idx],data2$state_
abbrev [idx],data2$party_code[idx]))

colnames (inddat) <- c("name","state","party")

inddat$party[is.na(inddat$party)] <- "NA"
inddat$party[inddat$party==100] <- "D" # recode Democrats
inddat$party[inddat$party==200] <- "R" # recode Republicans
inddat$party[inddat$party==1] <- "Federalist"
inddat$party[inddat$party==13] <- "Democratic-Republican"
inddat$party [inddat$party==29] <- "Whig"
inddat$party[inddat$party==555] <- "Jackson"
chambers [[cong]] <- 1list(Y=Y,inddat=inddat ,name=paste("S",cong, sep
=""))
}

The code does not populate itemdat because there aren’t interesting vote-specific variables to
include. When constructing a list of chambers, it is essential to properly name the voters and
the votes (stored in Nids and Tids, respectively). This example uses a Senator’s ICPSR id as the
unique identifier for voters. It is this identifier that will allow proper merging of the chambers into
one large chamber. The example concatenates the chamber and the roll call number as the unique
identifier for votes. This is because the roll call number is only unique within a given session of the
Senate. Failing to include the Congress number in the identifier would lead to improper merging
since merging would treat roll call 46 in the 1st session of the Senate as the same vote as roll call
46 in the 18th session of the Senate (for example), even though these votes are unrelated.

A collection of chambers can be saved or loaded using the commands ipe_save_chambers and
ipe_load_chambers, which have similar functionality to ipe_save_chamber and ipe_load_chamber and

are illustrated below:
Example 3 (continued).

The collection of chambers object can be saved as:

ipe_save_chambers (chambers ,paste(dirl,"senl_113.rds",sep=""))

and can be loaded as:

chambers2 <- ipe_load_chambers(paste(dirl,"senl1_113.rds",sep=""))

2.4 Ordered Data

In it possible to convert ordered responses to binary responses. Consider an ordered response of

the following form,

xh, = ap + Vo, + ent (1)

where we observe z,; = j if an only if ; < 2y < 7,41 and where 74; are cutoffs for vote ¢,
j €40,....,J}, J is number of responses for vote j, 7o = —oo, and 7; = co. Based on this, we can

derive,

Pr(zn: = j) = ®(1j —ar — i) (2)

If we recode ordered responses based on whether the response is less than or equal to j for each
j €{1,...,J —1} and define the reduced form parameters a;; = 7;; — at, then these recoded ordered
responses fit into our binary outcome framework.! Data can be converted as such using the function
ipe_expand. This functions takes in a (dense) matrix where missing values denote missing values
and integers denote ordered responses, and produces a dense matrix of the format required by ipe.

The columns of the inputed matrix must be named. Below, we illustrate one example:
Example 4 (2000 National Annenberg Election Study).

The 2000 National Annenberg Election Study asked a number of policy questions which can be
used to estimate the ideology of the mass public. Few of these are binary, but the vast majority
are ordered. The following code loads the binary and ordered policy questions from the NAES and

converts the ordered items to binary items.

datal <- read_excel(paste(dirl,"npat_key.xlsx",sep="")) # item key
data2 <- read.delim(paste(dirl,"rcs.dat",sep="")) # the NAES

Y <- data2[,fmatch(datal$var ,names (data2))]

Y[Y>4] <- NA # get rid of invalid responses

colnames (Y) <- datal$var # name the items

party <- data2$CVol

party[party==1] <- "R"

party [party==2] <- "D"

party[party!="D"&party!="R"] <- "I"

inddat <- data.frame(party=party,state=data2$CST) # individual data
itemdat <- data.frame(lab=datal$lab,type=datal$type) # item data
chamber <- ipe_ordered_to_binary(Y,itemdat=itemdat)

chamber$inddat <- inddat

chamber$Y <- ipe_dense_to_sparse(chamber$Y) # convert to sparse, for

efficiency

Note that the ipe_ordered_to_binary function only works with dense data, but the dense data created

by this function can then be converted to sparse data.

2.5 Bridging Chambers

Suppose that we have a number of chambers that are connected using a small number of bridge

voters or bridge votes. For example, we may have 113 sessions of the U.S. Senate connected by

!Though the marginal probabilities are correct, the observations would no longer be independent, leading standard
errors to potentially be too small if there are many ordered observations. This can be accounted for by clustering by
ordered response, but this is not yet implemented in ipe.

Senators who served in multiple sessions. Such problems pose special challenges. Here, we demon-
strate how to construct a large “chamber” by bridging together a number of smaller chambers,
with the next subsection describing how to check if there are enough bridges between the smaller
chambers and Section 3.2 demonstrating how to construct starting values for estimation problems
involving bridging.

Chambers can be bridged together using the function ipe_merge_chambers, which takes in a
collection of chambers object and returns a chamber object—a list with the components Y (the
merged data matrix, in sparse form), source (which lists for each entry in Y, the chamber the
entry came from), inddat (the merged individual level data), itemdat (the merged item data),
and member (a membership matrix for individuals). Note that if an individual appears in two
chambers, ipe_merge_chambers assumes that their individual level data does not vary by chamber.
This is violated in voteview’s roll call data for party (considered below)—many legislators changed
their party without the ICPSR code changing. This generally occurred when the individual’s party
changed due to a change in the party system. Users wanting to collect individual level data that
changed across chambers will have to collect this data separately from the ipe_merge_chambers

function.
Example 3 (continued).

The sessions of the U.S. Senate can be merged into a single chamber using as bridge individuals

Senators who served in multiple sessions. The following code accomplishes this:

mergel <- ipe_merge_chambers (chambers)

The function ipe_split_chamber takes a single chamber and splits it into a collection of chambers.
By default, ipe_split_chamber will split by source variable, but this can be over-ridded by specifying

a split variable. This is illustrated below:
chamber3 <- ipe_split_chamber (mergel,split=mergel$source)

In this example, split could have been omitted as ipe_split_chamber would have split the chambers
using source by default. Note that ipe_split_chamber will fail on dense chambers. If it is desired
to split a dense chamber, the data matrix can be converted from dense to sparse and the chamber

can then be split.

2.6 Bridge Analysis

Before merging the chambers, it is important to check that enough bridges are present to obtain
accurate results. Shor, McCarty and Berry (2008) and Battista, Peress and Richman (Forthcoming)
have found in Monte Carlo experiments that good performance can be achieved with relatively few
bridge individuals or bridge items—as few as 5 bridges may be enough, with 20 bridges being a very

safe amount. The function ipe_bridge_analysis can help in checking if enough bridges are available.

This function takes in collection of chambers. An optional parameter is minnum (default is 20)
which is the minimum number of bridges to require. The function first counts the raw number
of bridges between any pair of chambers (summing bridge individuals and bridge items). Next,
it applies that Ford-Fulkerson Algorithm (Ford and Fulkerson, 1956) to compute the maximum
flow between any pair of chambers. To see why this is useful for, there are 0 senators who served
in the 1st Congress as well as the 10th Congress. However, there are 21 who served in the 1st
and the second, 22 who served in the 2nd and the 3rd, 23 who served in the 3rd and the 4th, etc.
Connecting any pair of congresses between the 1st and the 10th, we never have fewer that 21 bridge
individuals. The maximum flow algorithm is one way of accounting for the fact that one chamber
may be bridged to another chamber indirectly.

The function ipe_bridge_analysis returns a list with elements count, countind, countitem, and
flow. flow contains the flow between each pair of chambers. In the event that there is a flow less
than minnum between between at least two chambers, the function will also return clusters. The
connections between chambers with a flow of at least minnum generate an undirected graph which
is partitioned into connected components (Skiena, 1997). If the graph is not connected, clusters

will contain the connected components.
Example 3 (continued).

The following code analyzes the number of bridges in the U.S. Senate:
bridgel <- ipe_bridge_analysis (chambers)

As the flow is at least 20 for each pair of chambers, clusters is not returned. countind and countitem
contain the number of bridge individuals and bridge items between every pair of chambers. count
will contain the total number of bridges (the sum of the number of bridge individuals and bridge
items). Below are countind, countitem, and flow for the first 10 sessions of the Senate:
> bridgel$countind[1:10,1:10]

S1 S2 83 S4 S5 S6 S7 S8 S9 S10
S1 NA NA NA NA NA NA NA NA NA NA

S2 21 NA NA NA NA NA NA NA NA NA
S3 12 21 NA NA NA NA NA NA NA NA

S4 8 14 23 NA NA NA NA NA NA NA
S5 5 6 13 31 NA NA NA NA NA NA
S6 3 4 7 19 26 NA NA NA NA NA
ST 1 3 5 9 12 22 NA NA NA NA
S8 1 4 5 7 7 12 24 NA NA NA
S9 0o 1 2 3 4 4 12 27 NA NA

st0 0 1 1 1 3 3 6 19 25 NA
> bridgel$countitem[1:10,1:10]

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S1 NA NA NA NA NA NA NA NA NA NA

S2 O NA NA NA NA NA NA NA NA NA
S3 O O NA NA NA NA NA NA NA NA
sS4 O O O NA NA NA NA NA NA NA
S5 0O O O O NA NA NA NA NA NA
S6 0 0 O O O NA NA NA NA NA
ST 0 0 0 O O O NA NA NA NA
S8 0 0 0 O O O O NA NA NA
S9 0 0 0 0 O O O O NA NA
sito 0 0 0 O O O O O O NA
> bridgel$flow[1:10,1:10]

S1 82 83 S4 S5 S6 S7 S8 89 S10
S1 NA 57 57 57 57 57 57 57 b7 57
S2 57 NA 85 85 85 85 85 85 85 85
S3 567 85 NA 99 99 99 99 99 99 99
S4 57 85 99 NA 119 108 107 125 125 125
S5 567 85 99 119 NA 108 107 119 119 119
S6 657 85 99 108 108 NA 107 108 108 108
S7 57 85 99 107 107 107 NA 107 107 107
S8 567 85 99 125 119 108 107 NA 141 133
S9 57 85 99 125 119 108 107 141 NA 133
S10 57 85 99 125 119 108 107 133 133 NA

The function reports that there are no bridge items (as expected) and few bridge individuals between
distant sessions of the Senate, but that results demonstrate that the bridging is not problematic as
distant chambers are connected indirectly though chains of bridge individuals.

The example below is intended to demonstrate an instant where bridging is problematic.

Example 5 (Merging the National Political Awareness Test and Congressional Roll Call Voting).

The National Political Awareness Test (NPAT) is a survey of Congressional candidates that
was first fielded in 1992. Candidates for office are asked a series of policy questions, with the same
questions asked of House and Senate candidates, and many identical questions asked in different
years. In Example 3, different sessions of the Senate were bridged by assuming that Senators do
not change their positions over time. If we wanted to develop a dynamic measure of the positions of
Senators, this assumption could not be made and other bridges would have to be identified. Here,
we consider using common questions asked in the NPAT over different years as bridges over time,
and members of the House and Senate who responded to the NPAT as bridges between the roll call
voting in a Session of the House and Senate and the NPAT. For purpose of illustration, we assume
that there are sufficient bridges between the NPAT over time and investigate whether there are
sufficient bridge individuals between each session of roll call voting and the NPAT.

The following code loads the NPAT /Roll Call data, uses source from the loaded chamber to split

10

up the data into separate chambers, and analyzes the bridges between these chambers (checking
for pairs of chambers where the flow is less than 10).
chamber <- ipe_load_chamber (paste(dirl,"npatl.rds",sep=""))

chambers <- ipe_split_chamber (chamber)

bridgel <- ipe_bridge_analysis(chambers ,minnum=10)
The function identifies problematic pairs of chambers with the output,

[1] "cluster 1: NPAT/H102/H103/H104/H105/S105/H106/H107/H108/H109/H110/
H111/S111/H112/S112/H113/S113/H114/S114/H115/81156"
[1] "cluster 2: S102"

[1] "cluster 3: S103"
[1] "cluster 4: S104"
[1] "cluster 5: S106"
[1] "cluster 6: S107"
[1] "cluster 7: S108"
[1] "cluster 8: S109"
[1] "cluster 9: S110"

indicating that the 102nd through 110th Senates are connected to the other chambers by too few
bridge individuals. Analyzing countind identifies the source of the problem—in these Senates, there
were too few Senators who responded to the NPAT (and due to the structure of the data, there are
no bridge items and no indirect bridges, so flow is equal to countind).

To fix the problem, we can bridge the Senate indirectly to the NPAT using bridge items between
concurrent sessions of the House and Senate. The following code loads similar data and checks it:
merge6 <- ipe_load_chamber ("c:\\Users\\mikeO\\Desktop\\npat2.rds")

chambers6 <- ipe_split_chamber2(merge6)

bridge6 <- ipe_bridge_analysis2(chambers6 ,minnum=10)

Examining the flow matrix, we find that it is always greater than 24, suggesting more confidence

that we have a sufficient number of bridges.

3 Estimation

3.1 Estimation

Once the data matrix is formed, estimation can be performed in three steps—computing start-
ing values, minimizing the objective function, and normalizing the estimates. Functions for each
of these interact with ideal point objects. An ideal point object has the elements Alpha and
Delta, representing the individual parameters and the item parameters, and optionally, AlphaSe,
AlphaVarDiag, DeltaSe, DeltaVarDiag, Fit, IndFit, and ItemFit.

Example 1 (continued).

11

The following code illustrates the three steps in the estimation process.
ipels <- ipe_start(Y,1) # starting values
ipelu <- ipe_pmle(Y,1,ipe=ipels) # main estimation
ipel <- ipe_normalize_by_group(ipelu,party,list("D"=-1,"R"=1)) # normalize
output

The first command, ipe_start, takes a chamber object and a number of dimensions (in this case
set to 1) and returns an ideal point object—a list with elements Alpha and Delta containing the
starting values for o and 6 = (a,b), respectively. The command itself does the following: starting
values for a are computed using method A described on page 7 of Peress (forthcoming). Starting
values for § are computed using vote-specific (penalized) probits, taking the starting values for a as
given. The starting values for o and ¢ are then re-normalized based on the scale suggested by the
prior as described on pages 8 and 9 of Peress (forthcoming). Optional parameters include AlphaFac
and DeltaFac, which determine the penalty parameters A\, and As. These may be provided as
scalars (in which case it is assumed that all individuals and items have the same penalty term) or
as vectors of length IV and T respectively. Default values are 1 for both. As described in Peress
(forthcoming), applying penalized maximum likelihood estimation is equivalent to maximizing a
posterior distribution, so the penalty parameter can be interpreted as determining the dispersion
of the prior distribution. IndWeights and Item Weights allow for unequal weighting of individuals
and items, with the default being equal weighting.?

The second command, ipe_pmle, takes a dense or sparse data matrix and a number of dimen-
sions (again set to 1 in the example) and returns an ideal point object—a list with elements Alpha
(individual parameter estimates), Delta (item parameter estimates), AlphaSe and DeltaSe (stan-
dard errors), AlphaVarDiag and DeltaVarDaig (diagonal blocks of the variance-covariance matrix),
Fit (overall model fit statistics), IndFit (individual fit statistics), and ItemFit (item fit statistics).
Optional parameters again include AlphaFac, DeltaFac, IndWeights, and Item Weights, which have
the same default values as with ipe_start. MaxIter is the maximum number of iterations (default is
2500). TolD is the tolerance required of the maximum derivative for convergence (default is 1.0e-6,
and changing this is not recommended). TolX is the tolerance required of the maximum change in
parameters (default is 1.0e-12, and changing this is not recommended). SkipInference will skip the
computation of standard errors if set to 1 (default is 0). LineSearchOpt determines the type of line
search used by the optimizer, with 1 being trust region and 2 being backtracking.®> The default is
trust region, which is generally faster, but can be less robust than backtracking. Starting values
can be supplied in two ways. In the example, they are supplied to the parameter ipe as an ideal
point object (a list with elements Alpha and Delta). Alternatively, if it is desired to supply starting
values for only « or §, the parameters AlphaStart or DeltaStart can be used, with each taking in a

matrix of size equal to N x D or T x (D + 1), respectively.

2See Battista, Peress and Richman (Forthcoming), for example.
3See Dennis and Schnabel (1983) for a discussion of line search methods.

12

NumThreads (default value 1) determines the number of threads to use in the estimation. In
principle, it should be possible to divide work efficiently across multiple processors or cores. In
practice, the efficiency will depend on the cooling characteristics of the system. It is increasingly
common for multiple core computers to throttle their CPU when multiple cores are running for
extended periods of time. This is particularly likely to be the case for laptop computers. As such,
it is possible that increasing the number of threads will slow down performance. Users should
experiment with various choices of NumThreads rather than assuming that increasing the number
of threads will increase performance.

The estimates for « and ¢ produced by ipe_pmle are on the (likely arbitrary) scale suggested by
the penalty parameters. The third command, ipe_normalize_by_group, normalizes the ideal points
by setting a number of group averages to pre-selected values. The number of groups normalized
should be set equal to D + 1. The function takes an ideal point object (a list with elements
Alpha and Delta), a group to normalize by, and a list with normalized values for D + 1 groups.
If the ideal point object includes AlphaSe, DeltaSe, AlphaVarDiag, and DeltaVarDiag, these will
be transformed accordingly as well. The output will be an ideal point object with the estimates,
standard errors, and variance blocks appropriately transformed. Optional parameters include stat,
which is “mean” by default, but can be changed to “median” if D = 1.* num (default=0) sets the
minimum number of observations to use when calculating the group averages. For example, if num
is set to 20, individuals with 19 or fewer items will not be used in computing the group means.

The list of individual parameters supplied to ipe_normalize_by_group should be such that the
groups do not align along a lower dimensional subspace. Technically, this can be achieved by having
the differences between the individual parameter vectors span RP?. When D = 1, this amounts to
requiring that the two groups have distinct individual parameters. When D = 2, this would require
that the three groups not fall on a single line.

In computing the adjusted standard errors, ipe_normalize_by_group assumes that the groups are
growing in size as the number of individuals increases. One can force ipe_normalize_by_group to

normalize by D + 1 individuals instead of D 4 1 groups in the following way:

Example 1 (continued).

ipela <- ipe_normalize_by_group(ipelu,rownames(Y),list("Michael M. Honda"
=-1,"Tom McClintock"=1))

This would retain the validity of the estimates for o and ¢, but the standard errors would be
incorrect. There are two reasons why ipe does not allow for correct standard errors when scales
are normalized by small group means. First, uncertainty will generally be larger on these scales,

so these types of normalizations should be avoided. Second, once such a transformation is made,

4The group medians cannot be used when D > 1 because dimension-by-dimension medians are not preserved by
linear transformations.

13

the variance-covariance matrix would no longer be block-diagonal, so performing any subsequent
inferences would require storing the entire variance-covariance matrix (which would be large even
in smaller examples) or storing the history of such transformations.

In some cases, it may be difficult to identify D + 1 groups to normalize. In these cases, the
functions ipe_normalize_01, ipe_normalize_flip, ipe_normalize_permute, and ipe_normalize_varimax

may be used.
Example 4 (continued).

In normalizing the ideal points of the mass public in two dimensions, there are no obvious
groups that can be used to define the second dimension. Here, we can instead normalize the ideal

points to be mean zero, variance one, and uncorrelated across dimension:

ipe3s <- ipe_start(Y¥3,2) # starting values
ipe3u <- ipe_pmle(Y3,2,ipe=ipe3s) # main estimation

ipe3 <- ipe_normalize_OI(ipe3u)

After plotting the data, one may determine that reversing the order of one of the dimensions is
appropriate:

ipe3 <- ipe_normalize_flip(ipe3,1)

Here, the 1 indicates that the first dimension will be flipped around zero. It may also be desired
to swap the order of the dimensions:

ipe3 <- ipe_normalize_permute(ipe3,1,2)

In this case, the second and third parameters determine which dimensions are flipped, with this
example flipping the first and second dimension. The three transformations are not sufficient to

uniquely determine the scale of the ideal points. ipe_normalize_0I selects a transformation Cay, +d
such that:

N
¥ (Com+d) =0 (3)

=1

N N N /
]\,112<Can ZCam+d)<Can+d 120am+d> =7 (4)
n=1 m= m=1

The solution to second equation indicates that,

-1

%Z(an—]{,Zam) (an—]{,Zam> (5)

n=1 m=1 m=1

If D > 1, there are multiple solutions. ipe_normalize_0I selects the transformation C such that C

is lower triangular. An additional transformation of the form Co,, +d with d = 0 and CC’ = I will

14

preserve the mean and variance of ;. One such approach is the Varimax rotation (Kaiser, 1958)
applied to z—tt. To preserve a; + b, a transformation with d = 0 will transform Z—i as 0*12—1 and
leave a; untransformed. Since CC’ = I, we have C~! = C’. In this context, the Varimax rotation
is defined by,

4 2\ 2
Cuarimaz = arg maxz %Z <[C,bt]d> - % Z ([C/bt]d> (6)
C p 7 at p ag
The Varimax rotation transforms Z—i such that the variance of the squares is minimized, averaging
over dimensions. This rotation privileges item parameters that have large coefficients on a small
number of items, along each dimension. In the Factor Analysis literature, this rotation is often
argued to lead to more interpretable item parameters, corresponding to cutting lines that are
parallel to one of the D dimensions. Even if this is not explicitly desired, applying the rotation after
ipe_normalize_0I is useful for comparing two sets of estimated ideal points in multiple dimensions,

as it ensures that the ideal points are on the same scale.
Example 4 (continued).

The Varimax rotation is implemented in the function ipe_normalize_varimaz:

ipe3 <- ipe_normalize_varimax(ipe3)

Optional parameter num (default value 0) will ignore §; with fewer that num observations.
Due to the penalty terms, ipe_pmle will produces estimates for individuals or items, even if
these estimates are based on little data (or in the extreme case, no data). In some cases, this is

not problematic, as illustrated in the example below:
Example 1 (continued).

In the California House, the individual parameters are estimated based on at least 1133 obser-

vations:

> table(ipel$IndFit$IndTot)
1133 1341 1502 1861 1904 1927 1931 1943 1949 1958 1970 1974 1975 1978 1990 1992
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1999 2003 2007 2037 2039 2041 2045 2046 2053 2058 2063 2067 2068 2072 2073 2074
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
2075 2076 2078 2082 2083 2086 2087 2088 2089 2091 2093 2094 2096 2097 2099 2101
1 1 1 1 1 1 3 2 1 2 1 1 1 1 1 1
2108 2114 2115 2118 2119 2122 2125 2127 2128 2132 2147 2151 2154 2155 2157 2168
1 2 2 2 1 1 1 2 2 1 2 1 1 1 1 1
2170 2177 2181 2191
2 1 1 1

Example 4 (continued).

15

In the NAES, some individual parameters are estimated based on few observations or no obser-
vations:
> table(ipel$IndFit$IndTot)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
47 951 17 39 83 58 269 1312 14 19 29 37 57 36 61 128
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
85 183 483 255 743 5431 955 892 1592 4450 3834 664 1322 3402 6029 15
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
18 11 6 13 16 20 28 31 27 31 41 43 46 59 62 100
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
87 107 125 181 209 270 480 411 706 2606 976 1042 1546 3786 3400 636
64 65 66
938 2316 4507

A minimum number of observations per estimate can be maintained in two ways. After estimation,

the user can ignore all ideal points with fewer than 10 (for example) observations:
ipel1$Alpha[ipel$IndFit$IndTot<10,] <- NA
An alternative approach is to drop observations before estimation:

chamber2 <- ipe_reduce (chamber ,minind=10)

ipe2s <- ipe_start (chamber2$Y,2)

ipe2u <- ipe_pmle(chamber2$Y,2,ipe=ipe2s,LineSearchOpt=2)

ipe2 <- ipe_normalize_flip(ipe_normalize_varimax(ipe_normalize_O0I(ipe2u,
num=10)),c(1,1))

We can compare the two sets of results as follows:

> cor(ipe2$Alpha[fmatch(chamber$Y$Nids,chamber2$Y$Nids) ,1],ipel$Alphal, 1],
use="pairwise.complete.obs")

[1] 0.9997205

> cor(ipe2$Alpha[fmatch(chamber$Y$Nids,chamber2$Y$Nids) ,2],ipel$Alphal,2],
use="pairwise.complete.obs")

[1] 0.9997303

As can be seen, both approaches produce nearly identical estimates for the ideal points based on
at least 10 observations.

Above, the function ipe_reduce takes in a chamber and returns a reduced chamber. minind
(default value 0) is the minimum number of observations for retaining an individual. minitem
(default value 0) is the minimum number of observations for retaining an item. minmarg (default
value 0) is the minimum margin for retaining an item. Note that it is possible for ipe_reduce to
result in a chamber with individuals having fewer than minind observations or items with fewer
than minitem observations if both are set to a value greater than 0. This could occur (for example)

if some of the items that allowed individual to achieve minind observations were dropped due to the

16

item having fewer than minitem observations. This can be avoided by applying ipe_reduce multiple

times.

3.2 Estimating Bridge Chambers

As described in Peress (forthcoming), ipe_start is likely to fail to produce good starting values
when applied to very sparse chambers. The online appendix of Peress (forthcoming) describes an
alternative approach for computing starting values for bridged chambers, which is implemented
in the function ipe_bridge_start. The function takes in a collection of chambers, a number of
dimensions to estimate, and optional parameters. AlphaFac and DeltaFac supply the penalty
terms for penalized maximum likelihood estimation, and ensure that the starting values are on the
scale suggested by the penalty terms. MinNumAlpha (default value 5) is the minimum number of
bridge individuals. MinNumDelta (default value 5) is the minimum number of bridge items. In
the first step, ipe_bridge_start bridges together clusters of chambers that are connected by at least
MinNumAlpha bridge individuals. The connections between chambers generate an undirected graph
which is partitioned into connected components. In the second step, these clusters are connected if
there are at least MinNumDelta bridge items between the clusters. An undirected graph is again
formed and if the graph is not connected, ipe_bridge_start will fail. If a connected graph was found
in the first step, the second step is skipped. Note that it is possible for ipe_bridge_start to fail
even when ipe_bridge_analysis finds that there are sufficient bridges—this can occur if a chamber
is connected by a small number of bridges to many chambers. In this case, one can try lowering
MinNumAlpha and MinNumUDelta, but additional caution should be maintained as ipe_bridge_start
attempts to find starting values by re-mapping chamber estimates of the individual parameters and
the item parameters.

The optional parameters AlgorithmAlpha and AlgorithmDelta (default values 1) determine the
algorithm that is used in each step.’ If the algorithm for a step is set to 1, a penalized function is
optimized. If the algorithm for a step is set to 2, a constrained function is optimized. If algorithm 1
is used, Lambda (default value 1) determines the penalty term. If algorithm 2 is used, the constraint
is applied to the first chamber in the chambers object within the current cluster of chambers.

Algorithm 1 privileges not flipping the left-right orientation of chambers. Before applying
algorithm 1, it is thus necessary to guess the correct orientations. Within each cluster in the first
step, algorithm 1 builds a matrix where entry (n,m) is the correlation between the individual
parameters estimated in chambers n and m. If there are no individuals bridging the chambers,
or if the number of bridge individuals is less than optional parameter MinNumCorr (default value
10), the entry is set to 0. An eigenvalue decomposition is applied to the matrix and the sign of the
individual parameter is flipped whenever the corresponding entry of the first eigenvector is negative.

This procedure is designed to alter the orientation of the chamber-by-chamber ideal points such

5See the discussion on the bottom of page 2 of the online appendix of Peress (forthcoming).

17

that they are positively correlated across pairs of chambers. If D > 1, this same procedure is
applied one dimension at a time.

Algorithm 2 privileges constraining chambers with a lower index. The parameter order (a
permutation of {1,2,..., L}, where L is the number of chambers) re-orders the chambers, and thus
allows for the constraint to be applied to an arbitrary chamber. Suppose algorithm 2 is used. In
the first step, within each cluster of chambers, the lowest order chamber is constrained. In the
event that the chambers are connected in the first step, all chambers are in the first cluster and the
chamber with order equal to 1 is constrained. In the second step, as there is always one cluster,
the first chamber in the order is constrained.

In choosing an algorithm to use, one should consider whether a single chamber is connected
to many other chambers, or whether the chambers are connected in a long chain. For example,
in Battista, Peress and Richman (2013), 99 state legislature are connected to each other through
a common survey. All 100 chambers are connected using bridge individuals—individuals who re-
sponded to the survey and voted in one of the 99 legislative chambers. In this case, algorithm 2 is
appropriate, though order should be set so that the normalization is applied to this common cham-
ber. In the DW-Nominate Common Space, all chambers are connected using bridge individuals,
but only through long chains. In this case, algorithm 1 is more appropriate. The example below is

a simplified version of the DW-Nominate Common Space.
Example 3 (continued).

One could try estimating the ideal points without providing starting values as follows:

set.seed(1234) # set seed since results will be affected by random
starting values

ipelu <- ipe_pmle(mergel$Y,D=1)

ipel <- ipe_normalize_by_group(ipelu,mergeli$inddat$party,list(D=-1,R=1))

A plot of the party means over time is given in the first panel of Figure 3.2. The plot identifies
implausible flips in the relative positions of the Democratic and Republican parties that are due
to failing to find a global optimum of the objective function due to poor starting values—in this
case, as no starting values were provided, random starting values were used. One can instead use
ipe_start to compute starting values using the singular value decomposition:

ipe2s <- ipe_start(mergel1$Y,D=1)
ipe2u <- ipe_pmle(mergel$Y,D=1,ipe=ipe2s)

These results are given in the second panel of Figure 3.2. Again, we find implausible flips in the
relative positions of the Democratic and Republican parties. Appropriate starting values can be

obtained using ipe_bridge_start:

ipe3s <- ipe_bridge_start (chambers ,D=1)
ipe3u <- ipe_pmle(ipe3s$Y,D=1,ipe=ipe3s$ipe)

18

No Starting Values SVD Starting Values Bridged Starting Values

_— Democratic
Democratic-Republican
Federalist
e Jackson
_ Republican
Whig

0 20 40 60 80 100 0 20 a0 60 80 100 0 20 40 60 80 100

In the third panel of Figure 3.2, the relative positions of the parties appear correct (apart from the
overall scale needing to be flipped). We can verify that these differences are due to better starting
values by comparing the optimized values of the objective function:

> ipeluFit0Objective

[1] 0.01300827

> ipe2uFit0bjective

[1] 0.01221757

> ipe3uFit0Objective

[1] 0.01204369

The starting values produced by ipe_bridge_start indeed lead to the smallest (and thus, best) value

for the objective function.
Example 6 (State Legislatures Example).

Gerald Wright’s Representation in the America’s Legislature Project (Wright, 2004) collected
data from 99 state legislatures for the 1999-2000 time period. These chambers can be bridged using
the National Political Awareness Test (NPAT), a survey filed out can candidates for office. State
legislators who responded to the NPAT serve as bridge individuals between the NPAT and roll call
voting in the state legislatures, with the state legislatures indirectly bridged to each other through
the NPAT. This example differs from Example 3 in there are no long chains to worry about. It is
also a more difficult example due to the fact that some chambers have very few bridges and a few
chambers exhibit some strange voting behavior.

We first try to use algorithm 1. For some state legislatures, there are only 3 bridge individuals
between the NPAT and the roll call data. Though this is on the very low end of what we would
need for reliable bridging, setting MinNumAlpha to 3 forces ipe_bridge_start to provide starting

values.

19

WIH wiIs

— D — D
— R — R
e | > |
=} ‘ ‘H| :
0 1 2 3

0.5 1.0
1.0 1.5 2.0

0.5

0.0

T \‘ 11 I | | \‘\ 1Nk \m’ T \‘ 1| III}HH
-4 -3 -2 -1 -3 -2 -1 0 1 2
Alpha Alpha
Figure 1: Density, Wisconsin House Figure 2: Density, Wisconsin Senate

ipels <- ipe_bridge_start(chambers,1,MinNumAlpha=3)

ipelu <- ipe_pmle(ipels$Y,D=1,ipe=ipels$ipe)

ipel <- ipe_normalize_by_group(ipelu,ipels$inddat$Party,list("D"=-1,"R"=1)
)

We can demonstrate a likely problem with the following code:

ipe_density(ipel,by=ipels$inddat$Party ,main="WIH",subset=ipels$inddat$
State=="WI"&ipels$inddat$Chamber=="H"&substr (ipels$inddat$Bridge ,1,1) ==
"R",bys=c("D","R"),col=c(’blue’,’red’) ,rug=T)

ipe_density(ipel,by=ipels$inddat$Party ,main="WIS",subset=ipels$inddat$
State=="WI"&ipels$inddat$Chamber=="S"&substr (ipels$inddat$Bridge,1,1) ==
"R",bys=c("D","R"),col=c(’blue’,’red’) ,rug=T)

The plots are given in Figure 3.2. The Democrat and Republican parties have opposite orientations
in the Wisconsin House and the Wisconsin Senate. This is unlikely to be the case in reality, and
likely occurred because of poor starting values. The following code instead uses algorithm 2, which

may be more effective when there are no long chains:

ipe2s <- ipe_bridge_start(chambers,1,MinNumAlpha=3,AlgorithmAlpha=0,order=
c(9,1:8,10:100))

ipe2u <- ipe_pmle(ipe2s$Y,D=1,ipe=ipe2s$ipe)

ipe2 <- ipe_normalize_by_group(ipe2u,ipe2s$inddat$Party,list("D"=-1,"R"=1)
)

Setting order equal to ¢(9,1:8,10:100) ensures that the constraint is applied to the scale of NPAT
ideal points, which is the obvious choice as it is the only chamber connected to every other chamber.

Examining the objective function values, it appears that a better estimate was found:

20

> ipelFit0bjective
[1] 0.003082549
> ipe2Fit0bjective
[1] 0.003077109

A further check examines whether the left-right orientation of the Democratic and Republican
parties is consistent across chambers:
ipe_means (ipe2 ,by=paste(ipe2s$inddat$State,ipe2s$inddat$Chamber) ,subset=

ipe2s$inddat$Party=="R")-ipe_means (ipe2 ,by=paste(ipe2s$inddat$State,
ipe2s$inddat$Chamber) ,subset=ipe2s$inddat$Party=="D")

Examining these, only the Rhode Island House has the wrong orientation.

Finding a few suspect chambers is common is harder problems such as this one. In these
instances, one may want to perturb some of the estimates and re-optimize. This can be accomplished
with the help of the function ipe_init_delta, which takes in a chamber and a matrix containing
the current . The function optimizes over § given the current «. Optional parameters include
AlphaFac (default value 1), DeltaFac (default value 1), IndWeights (default equal weighting), and
Item Weights (default equal weighting).

We can attempt to fix this problem with Rhode Island as follows:
ipe3ds <- ipe2u
ipe3s$Alphalipe2s$inddat$Chamber=="H" & ipe2s$inddat$State =="RI"] <- -

ipe3s$Alphal[ipe2s$inddat$Chamber=="H" & ipe2s$inddat$State =="RI"]
ipe3s$Delta <- ipe_init_delta_sparse(ipe2s$Y,ipe3s$Alpha)
ipe3u <- ipe_pmle(ipe2s$Y,D=1,ipe=ipe3s)
ipe3 <- ipe_normalize_by_group(ipe3u,ipe2s$inddat$Party,list("D"=-1,"R"=1)
)

The code starts with the previous estimates, but adjusts the ideal points for the Rhode Island
House by flipping the scale around 0. The estimates for § are then re-optimized. Skipping this
later step would leave the § as the values that optimize the as before the scale was flipped, which
could prevent the optimizer for exploring this potentially better orientation. These new starting
values lead to slightly improved estimates:

> ipe3Fit0bjective
[1] 0.003076813

Further information can be obtained by setting SaveAlphaArray equal to true in ipe_bridge_start:

ipelds <- ipe_bridge_start (chambers,1,MinNumAlpha=3,AlgorithmAlpha=0,order
=c(9,1:8,10:100) ,SaveAlphalArray=T)

Here, we can directly examine the chamber-by-chamber estimates:

plotO(iped4s$AlphaArray [[1]][,,1],iped4s$AlphaArray [[1]][,,70],xlab="NPAT",
ylab="Roll Call",labels=ipe2s$inddat$Party)

21

Roll Call

bvp P

D

D

R

R

R

I
-1.2

I
-1.0

I
-0.8

I I
-0.6 -04

NPAT

I
-0.2

I
0.0

I
0.2

22

The code above generates Figure 3.2. Among the bridge individuals, a large number of Democrats

have similar roll call ideal points while having distinct NPAT ideal points. One Democrat that

is on the extreme left in the roll call data has a more conservative NPAT ideal point than some

Republicans. To examine whether the estimates converged properly, we can restart the estimates

for the Illinois House, while leaving the other ideal points unchanged:

ipebs <- ipe3u

ipebs$Alpha[ipe2s$inddat$Chamber=="H" & ipe2s$inddat$State =="IL"] <- O

ipebs$Delta <- ipe_init_delta_sparse(ipe2s$Y,ipebs$Alpha)

ipebu <- ipe_pmle(ipe2s$Y,D=1,ipe=ipebs)

ipeb <- ipe_normalize_by_group (ipebu,ipe2s$inddat$Party,list("D"=-1,"R"=1)
)

We can first check whether the fit improved:

> ipebFit0bjective
[1] 0.003071611

Indeed the fit improved.

An important point to consider when applying ipe_bridge_start relates to how the data is par-
titioned into chambers. In Example 3, the partitioning was the only obvious one. In Example 6,
different NPAT surveys were fielded in different states, with many identical items which served as
bridges. One could worry that treating the merged NPAT in a single chamber would lead poor

starting values. We compare two approaches in the example below:
Example 6 (continued).

Basic starting values can be computed as:

npat <- chambers [[9]]
ipe6s <- ipe_start(npat$Y¥,1)
ipe6u <- ipe_pmle(npat$Y,1l,ipe=ipebs$ipe)

Bridged starting values can be computed as:

chambers2 <- ipe_split_chamber (npat,npat$inddat$State [npat$¥$r+1])
ipe7s <- ipe_bridge_start (chambers2,1)
ipe7u <- ipe_pmle(ipe7s$Y,1,ipe=ipe7s$ipe)

Comparing the objectives,

> ipe6uFit0Objective
[1] 0.3769918
> ipe7uFit0Objective
[1] 0.3769918

we find that the fit is identical. Comparing the estimates themselves also indicates that both

methods of producing starting values appeared to be effective.

23

Example 6 demonstrates the need for caution with starting values. Using random starting
values will cause problems in difficult examples, but all starting value algorithms remain ad-hoc
to an extent. The starting value algorithms available in ¢pe are intended to handle many types of

data, but the user should always consider the following checks on the estimates:
1. Examine patterns within each chamber with respect to individual level variable (e.g. party)

2. Examine the scatter plots of chamber-by-chamber estimates among pairs of chambers using

bridge individuals
3. Apply greater scrutiny to connections that are held together by few bridged voters

Even easier cases (e.g. Example 3) may pose difficulties without good starting values. In more
difficult cases, such as those with few bridge observations, or those where behavior appears to differ
by chamber among the bridge individuals, even good starting values algorithms may fail to produce

appropriate starting values for all chambers.

4 Visualization and Interpretation

4.1 Visualizing Ideal Points

The function ipe_density can be used to visualize the density of the data along one dimension. The

function takes an ideal point object as well as optional parameters listed in Table 2.
Example 1 (continued).

For example, the following can be used:
ipe_density (ipel,party)
Results are given in Figure 3. Here, the colors are chosen by default. To specify the colors, add
the additional parameters bys and cols. For example,
ipe_density(ipel,by=party,bys=c("D","R"),cols=c(’blue’,’red’))
These results are given in Figure 4.

ipe_density can also be applied for dimension-by-dimension visualization when D > 1, provided

that the parameter d is specified.
Example 2 (continued).

The density of ideal points for the two dimensions can be obtained as follows:

ipe_density(ipel,by=party,bys=c("D","SD","R"),cols=c(’blue’,’cyan’,’red’),
d=1)

ipe_density(ipel,by=party,bys=c("D","SD","R"),cols=c(’blue’,’cyan’,’red’),
d=2)

24

2.0

2.0

15
15

1.0
1.0

0.5
0.5

Figure 3: CA House Density, Default Colors Figure 4: CA House Density, Custom Colors

These results are given in the Figures 5 and 6. Along the first dimension, non-Southern and
Southern Democrats are on the left (with the Southern Democrats being somewhat more moderate)
while the Republicans are on the right. The second dimension divides the non-Southern and
Southern Democrats, with the Republican party being in the middle.

For two and higher-dimensional visualization of ideal points, the functions ipe_scatter and
ipe_contour can also be used. Which of these is chosen depends on the number of individuals
as scatter plots will be hard to interpret when there are a large number of data points, unless
modified in some way. ipe_scatter and ipe_contour take in an ideal point object. ipe_scatter can
be used to produce a scatter plot or a plot of group averages while ipe_contour produces contour

plots. Optional parameters are given in Tables 3 and 4.
Example 2 (continued).

We can use ipe_scatter to plot the two dimensional ideal points of members of the 90th Senate:
ipe_scatter (ipe2,by=party)
with results given in Figure 7. Again, these results can be improved by selecting appropriate colors:

ipe_scatter (ipe2,by=party2,bys=c("D","SD","R"),cols=c(’blue’,’cyan’,’red’)
)

with results given in Figure 8.
Example 4 (continued).
Considering the NAES data once again, we can attempt to report a scatter plot of ideal points

by party (Figure 9):

25

0.8

0.6

0.4

0.2

0.0

Figure

sion

04 06

0.2

Alpha 2

-04 -0.2 0.0

-0.6

Figure

Colors

5: US Senate Density, First Dimen-

_ S R
SD
| s5P R
sD SD %R
SD R
R
| o DEPSDSD g‘mRR
DD R B
® DE%SEDD RR *
SPoo B By RRr
1° Dpp R "
D p R
@ m R
— R
T T T T I
-2 -1 0 1 2
Alpha 1
7: US Senate Scatter Plot, Default

3.0

25

0.5 1.0 15 2.0

0.0

26

-1.0 -0.5 0.0 0.5 1.0

Alpha2

Figure 6: US Senate Density, Second Dimen-

sion

04 06

0.2

Alpha 2

-04 -0.2 0.0

-0.6

Figure

Colors

] R
a R
e R
R R
| R RRR R
D
D o g;QR
] R R
DD R B
D
D@% > rg R R
4.0 R
DPp '@)D R
_ Dbp R R
D p R
» D R
1 R
T T T T T
-2 -1 0 1 2
Alpha 1

8: US Senate Scatter Plot, Custom

ipe_scatter (ipel ,by=inddat$party,bys=c("D","I","R"),cols=c(’blue’,’black’,
’red’))
The results are clearly not informative, as there are too many points being plotted. One alternative

is to examine contours instead (Figure 10):
ipe_contour (ipel ,by=party,bys=c("D","I","R"),cols=c(’blue’,’black’,’red’))

The results indicate that there is a lot of overlap between the parties in the ideology of the mass

public. An alternative approach would be to report a scatter plot of the state means (Figure 11):

ipe_scatter (ipel ,by=inddat$state,stat="mean"

The figure produces different insights than the previous two figures, focusing on state differences
rather than party differences, but is useful for beginning to understand the patterns. The second

dimension appears to separate Southern states from non-Southern states.
Example 6 (continued).

Below, we estimate two dimensional ideal points using only the State Legislative NPATs:
ipe8s <- ipe_start(npat$Y,2)
ipe8u <- ipe_pmle(npat$Y,2,ipe=ipe8s)
ipe8 <- ipe_normalize_by_group(ipe8u,npat$inddat$Party,list("D"=c(-1,0),"R
"=c(1,0),"L"=c(1,4)) ,num=20)
ipe8$Alphalipe8$IndFit$IndTot <20] <- NA

In normalizing the ideal points, we postulate that one dimension will divide the Democratic and

Republican parties and one dimension will divide the Libertarian party from the major parties.

The code below reports a scatter plot of the ideal points:

ipe_scatter (ipe8,by=npat$inddat$Party,bys=c("D","R","L"),cols=c(’blue’,’
red’,’yellow’))

Figure 12 shows a clear pattern, but is somewhat hard to decipher due to the large number of

Democratic and Republican candidates. The code below only plots 10% of the Democratic and

Republican candidates for clarity:

ipe_scatter (ipe8,by=npat$inddat$Party,bys=c("D","R","L"),cols=c(’blue’,”’
red’,’yellow’) ,subsamp=c(.1,.1,1))

Alternatively, one can rely on a contour plot:

ipe_contours (ipe8,by=npat$inddat$Party,bys=c("D","R","L"),cols=c(’blue’,’
red’,’yellow’))

Both Figures 13 and 14 demonstrate a very sharp divide between the Libertarian candidates and
the major party candidates along the second dimension, with the Libertarian candidates aligned

with the Republican candidates along the first dimension.

27

Alpha 2

-2

-4

-4 -2 0

Alpha 1

Figure 9: NAES Scatter Plot

Alpha 2

0.3

0.2

0.1

-0.1 0.0

-0.2

-0.3

o |
—
0 |
o
N
g
= o
< 24
n
2]
]
o
S |
T ! T T T T
4 -05 0.0 05 1.0
Alpha 1
Figure 10: NAES Contours
MS
LA
AL OK
SRY
R
SD
Wy, = wy
FL N mps 0
orhz MT |, NE
be PA NgO UT .
wo W M
D
AY N DERW
VT MN
MA
T T T I
-0.4 -0.2 0.0 0.2
Alpha 1

Figure 11: NAES State Means

28

29

Alpha 2
Alpha 2

Alpha 1

Figure 13: Scatter Plot, 2D State Legisla-
tive NPAT Ideal Points (10% sample used
for Dem. and Rep. candidates)

Figure 12: Scatter Plot, 2D State Legislative
NPAT Ideal Points

Alpha 2

0.05 —0.05

-3 -2 -1 0 1 2 3

Figure 14: Contours, 2D state Legislative
NPAT ideal points

3 — c S — ¢
-- Alpha D
R
s T T T T T \\” S T T T T I
-2 -1 0 1 2 3 -1 0 1 2 3
Cutpoints Cutpoints
Figure 15: CA House Cutpoints Compared Figure 16: CA House Cutpoints Compared
to Chamber Density to Party Densities

4.2 Visualizing Cutting Lines

The function ipe_cutlines can plot cutpoints (when D = 1), cutting lines (when D = 2), and
cutting line angles (when D = 2). The function takes in an ideal point object, as well as optional

parameters. Optional parameters are listed in Table 5.
Example 1 (continued).

When D = 1, the following command can be used to plot the cutpoints (see Figure 15):
ipe_cutlines (ipel)

A more informative version plots for reference the density of Democratic and Republican members

of the California House (see Figure 16):

ipe_cutlines(ipel,cols=’black’,byalpha=party,bysalpha=c("D","R"),colsalpha
=c(’blue’,’red’))

In the figure, the distribution of cutpoints indicates that the most common votes split the Demo-

cratic and Republican parties, but votes that split the Republican party are far more common than

votes that split the Democratic party. Since the Democratic party held a majority of the seats,

this finding is consistent with theories of majority party negative agenda setting power (Cox and
McCubbins, 2005).

Example 2 (continued).

When D = 2, ipe_cutlines allows plotting the cutting lines and cutting line angles, along with

the ideal points for reference. The command below plots the cutpoints (see Figure 17):

30

ipe_cutlines (ipel)

Because there are large number of cutting lines, the plot is largely uninformative, though one
can perhaps make out that there are more cutting lines that divide legislators along the second
dimension. One option is to report a random subset of the cutting lines (Figure 18):
ipe_cutlines (ipel, subsamp=.1,cols=’black’,byalpha=party2,bysalpha=c("D","
SD","R"),colsalpha=c(’blue’,’cyan’,’red’))

A random 10% of the cutting lines are reported. In addition, the ideal points are reported by party.
These results are reported in Figure 18. A majority of votes in the 90th Senate appear to split the
Southern and non-Southern Democrats, rather than splitting the two major parties. An alternative
approach to obtaining more interpretable results is to report the distribution of cutting line angles

(see Figure 19):
ipe_cutlines (ipel,angle=T)

The cutting line angles range from -90 to 90, with 0 indicating a cutting line that divides legislators
along the first dimension and -90 and 90 both indicating cutting lines that divide the legislators
along the second dimension, with positive (negative) angles corresponding to positive (negative)
slopes in Figure 18. The data here a circular in nature (Gill and Hangartner, 2010) and the
presentation of the data reflect the fact that cutting line angles of -89 and 89 represent very similar
cutting lines. The third panel of the figure again demonstrates the surprising pattern that votes
that split the Southern and non-Southern Democrats where most common in the 90th Senate. Note
that in comparing the cutting lines in Figure 18 with the cutting line angles in Figure 19, the visual

angles of the former figure will depend on the x and y scale chosen for the figure.
Example 4 (continued).

In order to aid in the interpretation of the dimensions in the NAES data, we can code the items
into categories. The items were coded as economic, social, or other. Economic items included
preferences on taxation, social security spending, education spending, etc. Social items included
preferences on abortion, the death penalty, effort to reduce discrimination, etc. Other issues in-
cluded preferences related to campaign finance, the military, and the environment. The code below
reports the results in two ways—using cutting lines and cutting line angles:

ipe_cutlines (ipel,ref=F,by=chamber$itemdat$type)
ipe_cutlines (ipel ,ref=F,by=chamber$itemdat$type,angle=T,bw=20)

The cutting lines are reported in Figure 20. The economic cutting lines largely divide respondents
along the first dimension. Though there is more variation among social and other cutting lines,
there is some tendency for these cutting lines to divide people along the second dimension, with this
begin more pronounced for other issues. The cutting line angles are reported in Figure 20. Here, we

can again see that economic issues tend to divide respondents along the first dimension. The peak

31

32

T
© _| R
o
m vl
> R
© <
o 7 /
< \ RR
3 . R
° o RA™ r/RR R
<} V_A_RR’/—
N —|
3 o iRt
= o L—RR
2 o R
2 < A Ry
=] [R
« ? R\Ri:te R
! TR
? < R R
= ?
[=} R
' © Rl
© ? R
< T T f T T
-2 -1 0 1 2
-2 -1 0 1 2
Alpha 1

.)) Figure 18: US Senate, Random Sample of
Figure 17: US Senate, All Cutting Lines . .
Cutting Lines

o , :
@ K
S 4 .
= . 5\
S J |
- /
&
S
=
=
o
-
S
3
[}
o
8
S
< ﬁlwwﬂwwwuwmﬂw-_ﬁ
=
-100 =50 0 50 100

Cutting Line Angle

Figure 19: US Senate, Cutting Line Angles

© — — econ — econ
oth oth
— soc — soc

0.0030
|

0.0020
|

Alpha 2

-2
|
0.0010
|

-4
|
S
0.0000
|

N0 | 1N TNTTN IR \LMJ}HI I

-4 -2 0 2 4 -100 -50 0 50 100
Alpha 1 Cutting Line Angle
Figure 20: NAES, Cutting Lines Figure 21: NAES, Cutting Line Angles

of the distribution for other cutting line angles is around 90 degrees suggesting that the average
cutting line divides voters along the second dimension. For social issues, the distribution peaks
around 65 degrees. Overall, these results could be summarized as suggesting that the first dimension
is economic and the second dimension is social, with the caveat that the prototypical social issues
are different than what we might expect—instead of abortion and efforts to reduce discrimination
coinciding directly with the second dimension, we find that preferences over campaign finance and

the military coincide more directly.

4.3 Summary Statistics

The functions ipe_median, ipe_mean, and ipe_var compute summary statistics for the ideal points.
ipe_median computes dimension-by-dimension medians, ipe_mean computes dimension by dimen-
sion means, and ipe_var computes variance covariance matrices. Each function takes in an ideal
point object and optional parameters. by specifies a grouping. bys (default is all values of by
sorted) determines the groups to report results for. subset applies the functions to a subset of the
data. num (default value 0) specifies the minimum number of items for reporting ideals points. For
example, if num is set to 10, only ideal points computed with at least 10 items with be included in

the means, medians, and variances.

4.4 Assessing Dimensionality

ipe provides a number of tool for selecting the number of dimensions to estimate. ipe_pmle produces
various fit statistics including the percent correctly predicted and the geometric mean probability.

The ideal point object contains three elements, Fit, IndFit, and ItemFit, which contain relevant

33

information. Fit is a data frame with elements listed in Table 6, IndFit is a data frame with
elements listed in Table 7, and ltemF'it is a data frame with elements listed in Table 8.

The function ipe_dim_fit aids in comparing the overall fit statistics for multiple dimensions at
once. The function takes in a data matrix and a maximum number of dimensions. The optional
parameter out (default value false) specifies whether to compute the fit statistics out-of sample.
By default, ipe_dim_fit will use all observation in both estimation and measuring fit. If out is set to
true, a hold-out sample is set aside, estimation in done in sample, and measuring fit is computed
out-of-sample.’ The optional parameter frac (default value 0.8) determine how much of the sample
to use for estimation, with 0.8 indicating that 80% of the sample is use for estimation and 20%
of the sample is the hold-out sample. Each observation (an individual’s response on a particular
item) has a frac percent chance of appearing in the training sample and a 1 - frac percent chance

of appearing in the holdout sample.
Example 2 (continued).

The following command can help assess dimensionality of the 90th Senate in sample:
ipe_dim_fit (Y,10)

The results are given in Figure 22. Exactly how to use this information is left up to the user,
but applying the elbow rule to the figure suggests a two-dimensional model is appropriate. The

following code can help assess dimensionality of the 90th Senate out-of-sample:
ipe_dim_£fit(Y,10,0ut=T)

The results are given in Figure 23. Applying the elbow rule to the out-of-sample fit similarly
suggests a two dimensional model. The 6-dimensional model provides the best fit, though the
improvement over the two-dimensional model is 2.0 percentage points and 0.9 percentage points
relative to the 3-dimensional model.

Applying the elbow rule (to either in-sample or out-of-sample fit statistics) provides one ap-
proach for selecting the number of dimensions. Strictly choosing the best fit in the hold out sample
provides a second approach. A third approach (illustrated in Sections 4.1 and 4.2) involves includ-
ing dimensions that can be interpreted. For example, Examples 2 and 4 clearly point to at least
two dimensions being present. In Example 6, the second dimension picked up differences between
Libertarian and major party candidates. This was despite the fact that there were many fewer Lib-
ertarian candidates in the sample, suggesting that ability to improve fit among the average major
party candidate was much smaller than the ability to improve fit among the average Libertarian
candidate. Unless we are inherently interested in the Libertarian candidates, this suggest a strong

case for a one-dimensional model for state legislative candidates.

5This particular approach to cross-validation is developed in Peress and Spirling (2010).

34

— PCP —— In Sample
GMP Out

0.9
|
0.95
|

0.8
|
0.90
|

Fit

0.7

Percent Correctly Predicted
0.85
!

0.80
|

Figure 22: 90th Senate, Fit, In-Sample Figure 23: 90th Senate, Fit, Out-of-Sample

References

Battista, James, Michael Peress and Jesse Richman. 2013. “Common Space Ideal Points, Com-
mittee Assignments, and Financial Interests in the State Legislatures.” State Politics and Policy
Quarterly 13:70-87.

Battista, James, Michael Peress and Jesse Richman. Forthcoming. “Estimating the Locations of
Voters, Legislators, Policy Outcomes, and Status Quos on a Common Scale.” PoliticalScienceRe-
searchMethods .

Cox, Gary W. and Matthew D. McCubbins. 2005. Setting the Agenda: Responsible Party Govern-
ment in the U.S. House. Cambridge: Cambridge University Press.

Dennis, John E. and Robert B. Schnabel. 1983. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Englewood Cliffs: Prentice-Hall.

Ford, L. R. and D. R. Fulkerson. 1956. “Maximal Flow through a Network.” Canadian Journal of
Mathematics 8:399-404.

Gill, Jeff and Dominik Hangartner. 2010. “Circular Data in Political Science and How to Handle
It.” Political Analysis 18:316-336.

Kaiser, Henry F. 1958. “The Varimax Criterion for Analytic Rotation in Factor Analysis.” Psy-
chometrika 23:187-200.

Peress, Michael. 2013. “Estimating Proposal and Status Quo Locations using Voting and Cospon-
sorship Data.” Journal of Politics 75:613-631.

35

Peress, Michael. forthcoming. “Large Scale Ideal Point Estimation.” Political Analysis .

Peress, Michael and Arthur Spirling. 2010. “Scaling the Critics: Uncovering the Latent Dimensions

of Movie Criticism.” Journal of the American Statistical Association 105:71-83.

Saad, Yousef. 2003. Iterative Methods for Sparse Linear Systems. Society for Industrial Mathemat-

ics.

Shor, Boris, Nolan McCarty and Christopher Berry. 2008. “Methodological Issues in Bridging Ideal

Points in Disparate Institutions in a Data Sparse Environment.” Working Paper.
Skiena, Steven S. 1997. The Algorithm Design Manual. Springer.

Wright, Gerald. 2004. “Representation in America’s Legislatures.” Indiana University: National

Science Foundation Grant.

Wright, Gerald. 2007. “Representation in the America’s Legislature Project.”.
https://doi.org/10.7910/DVN/LFULHR.

A Optional Parameters

36

37

Variable
d

by
bys

labs

cols

ltys

num

zlim
ylim
zlab

bw

subset
TUg
main

inset

Default

true

(—.4,0)

Description

The dimension to compute the density along. When D > 1, d (an
integer between 1 and D) must be supplied.

A grouping of the data, for example, party.

A list of groups to report results for, with values of by not found in
groups ignored. If not provided, groups will be a list of all unique values

in group appearing in alphabetical order

A labeling applied to the groups, which override the default of using the

values from by as their own labels

Line colors of density plots—a scalar if by is not provided, and a vector
with the same length as bys otherwise

Line types of density plots—a scalar if by is not provided, and a vector
with the same length as bys otherwise

Ideal point estimated from a sample of less than num items are dropped
from the analysis

A two-element vector containing the x-axis limits of the plot

A two-element vector containing the y-axis limits of the plot

A label for the x-axis of the plot

Bandwidth to use in Kernel density estimation (the same bandwidth is
applied to all groups, except for groups of size less than 10, which are
skipped over)

A subset of the data to analyze

Include a rug plot with the density

Label for the figure

Spacing for the legend

Table 2: Optional parameters for ipe_density

38

Variable Default Description

d1, d2 The dimensions to compute the scatter plot along. When D > 2, dI
and d2 (integers between 1 and D) must be supplied.
by A grouping of the data, for example, party.
bys A list of groups to report results for, with values of by not found in

groups ignored. If not provided, groups will be a list of all unique values

in group appearing in alphabetical order

zlim A two-element vector containing the x-axis limits of the plot
ylim A two-element vector containing the y-axis limits of the plot
cols Line colors of density plots—a scalar if by is not provided, and a vector

with the same length as bys otherwise
main Label for the figure
subsamp 1 Determines whether to report only a sub-sample of points in the scatter
plot. If scalar, must be a probability between 0 and 1. If a vector is

supplied, different groups are reported with different probabilities.

stat “ If set equal to “mean” or “median”, ipe_scatter will report group means
of medians, respectively.
zlab A label for the x-axis of the plot
ylab A label for the y-axis of the plot
subset A subset of the data to analyze

Table 3: Optional parameter for ipe_scatter

39

Variable
di, d2

by

bys

zlim
ylim
labs
cols
ltys
num
bw
levels

inset

subset

Default Description

The dimensions to compute the scatter plot along. When D > 2, dI
and d2 (integers between 1 and D) must be supplied.

A grouping of the data, for example, party.

A list of groups to report results for, with values of by not found in
groups ignored. If not provided, groups will be a list of all unique values
in group appearing in alphabetical order

A two-element vector containing the x-axis limits of the plot

A two-element vector containing the y-axis limits of the plot

A labeling applied to the groups, which override the default of using the
values from by as their own labels

Line colors of density plots—a scalar if by is not provided, and a vector
with the same length as bys otherwise

Line types of density plots—a scalar if by is not provided, and a vector
with the same length as bys otherwise

Ideal point estimated from a sample of less than num items are dropped
from the analysis

Bandwidth to use in Kernel density estimation (the same bandwidth is
applied to all groups, except for groups of size less than 10, which are
skipped over)

Number of levels of contours to report

Spacing for the legend

A subset of the data to analyze

Table 4: Optional parameter for ipe_contour

Variable

by
bys

labs

cols

ltys

num

zlim
ylim
xlab
ylab

bw

droplow,
drophigh
ref
nby
dither

angle

byalpha
bysalpha
colsalpha
ltysalpha

subsamp

nset

Default Description

true
10

false

(—.4,0)

A grouping of the data, for example, party.

A list of groups to report results for, with values of by not found in
groups ignored. If not provided, bys will be a list of all unique values in
group appearing in alphabetical order

A labeling applied to the groups, which override the default of using the
values from by as their own labels

Line colors of density plots—a scalar if group is not provided, and a
vector with the same length as bys otherwise

Line types of density plots—a scalar if group is not provided, and a
vector with the same length as bys otherwise

Ideal point estimated from a sample of less than num items are dropped
from the analysis

A two-element vector containing the x-axis limits of the plot

A two-element vector containing the y-axis limits of the plot

A label for the x-axis of the plot

A label for the y-axis of the plot

Bandwidth to use in Kernel density estimation (the same bandwidth is
applied to all groups, except for groups of size less than 10, which are
skipped over)

Drop cutlines outside the range.

If TRUE, Include a scatter plot of the ideal points for comparison.
Results are not reported for groups of size less that nby.

Standard deviation of random normal noise to add to cutting lines and
ideal points.

If FALSE, producing cutting line plot, if TRUE, produce cutting angle
density plot.

Grouping variable for the ideal points, a.

Groups for the ideal points.

Colors for « groups.

Line types for a groups.

Include cutting lines with probably subsamp. For example, if subsamp
= .1, only 10% of cutting lines are included. Has no effect if angle is set
to TRUE.

Spacing for the legend

Table 5: Optional parameter for ipe_cutlines

41

Variable Description
Objective The minimized (normalized) penalized log-likelihood
BasePerCorrl Percent correctly predicted when all individuals chose the modal re-
sponse on each item
BasePerCorr2 Percent correctly predicted when all individuals vote like the modal in-
dividual
Tot Total number of observations (i.e. the number of non-missing elements
inY
TotCorr Total number of correct predictions
TotPerCorr Percent correctly predicted
APRE1 Average Percent Reduction in Error, using BasePerCorr! as a baseline
APRE2 Average Percent Reduction in Error, using BasePerCorr2 as a baseline
GeoMeanProb Geometric Mean Probability
Table 6: Elements of Fit
Variable Description
IndTot Number of observations for each individual
IndCorr Number of correct predictions for each individual
IndPerCorr Percent correctly predicted for each individual

IndGeoMeanProb Geometric Mean Probability for each individual

Table 7: Elements of IndFit

Variable
ItemTot
ItemCorr

TtemPerCorr

Description
Number of observations for each item
Number of correct predictions for each item

Percent correctly predicted for each item

ItemGeoMeanProb Geometric Mean Probability for each item

Table &: Elements of ItemFit

	Overview
	Installation
	Model and Notation

	Loading Data
	Dense Data
	Sparse Data
	Chamber Data Structures
	Ordered Data
	Bridging Chambers
	Bridge Analysis

	Estimation
	Estimation
	Estimating Bridge Chambers

	Visualization and Interpretation
	Visualizing Ideal Points
	Visualizing Cutting Lines
	Summary Statistics
	Assessing Dimensionality

	Optional Parameters

