
1

Assignment 2

1. Set the sample size n <- 1000 and the number of variables k <- 3. In r, you can

simulate a normal random matrix using the command, x <- matrix(rnorm(n*k),n). Verify

that the resulting matrix has (approximately) a mean of zero and a variance matrix equal to the

identity using the commands colMeans(x) and var(x). Next, use the Cholesky decomposition

to simulate a (,)N random variable where

1

1

0.5

 and

1 0.5 0.1

0.5 2 0.3

0.1 0.3 0.5

 (hint: recall

that if ~ (0,)x N I , then 1/2 ~ (,)x N and that the Cholesky decomposition can be

computed using chol(omega)). Call the new matrix x2 (the dimensions can be made to work out

correctly is you use x2 <- as.matrix(rep(1,n)) %*% t(as.matrix(mu)) + x %*%

chol(omega). Remember that in order to perform matrix multiplication in r, you should use %*%

as * will perform component by component multiplication. Check that this worked using the

commands colMeans(x2) and var(x2). Verify that is indeed positive definite by computing

the eigenvalues of omega using the command eigen(omega).

 Now, suppose that you were using this to simulate data from a linear regression model.

Add a constant term to the matrix x3 using the code,

2

k3 <- k + 1
x3 <- matrix(rep(0,n*k3),n)
x3[1:n,1] <- 1
x3[1:n,2:k3] <- x2[1:n,1:k]

Generate the errors vector eps from the 2(0,2.8)N distribution (setting sigma0 <- 2.8).

Assume that 0 (0.5, 2,1,0.7) . Generate data from a linear regression model with x3 and the

data matrix and eps as the error term. Run a linear regression on this data using,

lm1 <- lm(y~x3)
summary(lm1)

What value of ̂ do you find and how does this compare to 0 ? Is ̂ very close to 0 , and if

so, why? Verify that you get the same answer using betahat <- solve(t(x3) %*% x3) %*%

t(x3) %*% y.

 Now, we will imbed this code in a loop to perform a Monte Carlo simulation. Set the

number of replications as S <- 1000. Imbed the code you previous wrote in a loop,

betahatsim <- matrix(rep(0,S*k3),S)
sigmahatsqrsim <- rep(0,S)
tstat3sim <- rep(0,S)
zstat3sim <- rep(0,S)
for(s in 1:S){

code here
}

(of course, you may put code like n <- 1000 before the loop). The top lines will allow you to

collect the simulations. You can simulate the main components of the model using,

y <- x3 %*% beta0 + sigma0 * eps
 betahat <- solve(t(x3) %*% x3) %*% t(x3) %*% y
 betahatsim[s,] <- betahat

 epshat <- y - x3 %*% betahat
 sigmahatsqr <- sum(epshat^2) / (n - k3)
 sigmahatsqrsim[s] <- sigmahatsqr

 varbetahat <- sigmahatsqr * solve(t(x3) %*% x3)
 beta3se <- varbetahat[3,3]^.5
 tstat3sim[s] <- (betahat[3] - beta0[3]) / beta3se

 robustmeat <- matrix(rep(0,16),4)

3

 for(i in 1:n) {
 robustmeat <- robustmeat + epshat[i]^2*x3[i,]%*%t(x3[i,])
 }
 robustmeat <- robustmeat / n
 robustbread <- solve(t(x3) %*% x3 / n)
 varbetahatrobust <- robustbread %*% robustmeat %*% robustbread / n
 beta3serobust <- varbetahatrobust[3,3]^.5
 zstat3sim[s] <- (betahat[3] - beta0[3]) / beta3serobust

inside the loop. Notice that ̂ is computed as 1(') 'X X X y , 2ˆ is computed as 1 ˆ ˆ'N K where

ˆˆ y X , the variance of ̂ is estimated to be 2 1ˆ (')X X
 , the sandwich estimator of the

variance is computed as
1 1

21 1 1

1 1 1

ˆ' ' '
N N N

n n n n n n nN N N
n n n

x x x x x x

 , a t-statistic for the test that

03 1 is computed based on the classical standard error, and a z-statistic for the test that 03 1

is computed based on the robust standard error. You can then evaluate the performance using,

OLS Unbiased / Consistent (LLN)
colMeans(betahatsim)
beta0

mean(sigmahatsqrsim)
sigma0^2

tstat
mean(abs(tstat3sim) > qt(0.975,n-k3))

zstat w/ robust standard errors (CLT)
mean(abs(zstat3sim) > qnorm(0.975))

 Simulate the model with n <- 10, n <- 100, and n <- 1000. Repeat the same exercise

with the following heteroskedastic error terms,

eps <- rep(0,n)
for(i in 1:n) {
 eps[i] <- rnorm(1) * x3[i,3]^2
}

For both cases, and for all three sample sizes, report whether OLS appears to be unbiased and

consistent with reference to the simulations. Report whether the t-test and the z-test appear to

have the correct size. Include your r code and output in your homework assignment.

4

Which assumptions from (A1)-(A7) and (B1)-(B8) does the data you generate satisfy?

How do the results of the simulations compare to properties we derived for the OLS estimator?

2. Present a heuristic proof of each of the following. Indicate the set of assumptions you are

using (and assume that the X’s are stochastic).

(a) OLS is unbiased.

(b) OLS is consistent.

(c) OLS is asymptotically normal with mean 0 and variance covariance matrix

1 1['] () [']n n n n n nV E x x Var x E x x .

