Assignment 2

1. Set the sample size n <- 1000 and the number of variables k <- 3. Inr, you can
simulate a normal random matrix using the command, x <- matrix(rnorm(n*k),n). Verify
that the resulting matrix has (approximately) a mean of zero and a variance matrix equal to the

identity using the commands colMeans(x) and var(x). Next, use the Cholesky decomposition

1 1 05 01
to simulate a N(x, Q) random variable where #=| -1 |and Q=05 2 0.3 (hint: recall
0.5 0.1 03 05

that if x ~ N(0,1), then z+Q"*x ~ N(x, Q) and that the Cholesky decomposition can be

computed using chol (omega)). Call the new matrix x2 (the dimensions can be made to work out
correctly is you use x2 <- as.matrix(rep(1,n)) %*% t(as.matrix(mu)) + x %*%
chol (omega). Remember that in order to perform matrix multiplication in r, you should use %*%
as * will perform component by component multiplication. Check that this worked using the
commands colMeans(x2) and var(x2). Verify that Q is indeed positive definite by computing
the eigenvalues of omega using the command eigen(omega).

Now, suppose that you were using this to simulate data from a linear regression model.

Add a constant term to the matrix x3 using the code,

k3 <- k +1

x3 <- matrix(rep(0,n*k3),n)
x3[1:n,1] <- 1

x3[1:n,2:k3] <- x2[1:n,1:k]

Generate the errors vector eps from the N(0,2.8%) distribution (setting sigma0 <- 2.8).
Assume that S, =(0.5,-2,1,0.7) . Generate data from a linear regression model with x3 and the

data matrix and eps as the error term. Run a linear regression on this data using,

Iml <- Im(y~-x3)
summary(Iml)

What value of ,3 do you find and how does this compare to £, ? Is ,3 very close to f,, and if

so, why? Verify that you get the same answer using betahat <- solve(t(x3) %*% x3) %*%
t(x3) %*% vy.
Now, we will imbed this code in a loop to perform a Monte Carlo simulation. Set the

number of replications as S <- 1000. Imbed the code you previous wrote in a loop,

betahatsim <- matrix(rep(0,5*k3),S)
sigmahatsqgrsim <- rep(0,S)
tstat3sim <- rep(0,S)
zstat3sim <- rep(0,S)
for(s in 1:S){

code here
}

(of course, you may put code like n <- 1000 before the loop). The top lines will allow you to

collect the simulations. You can simulate the main components of the model using,

y <- x3 %*% beta0 + sigma0 * eps
betahat <- solve(t(x3) %*% x3) %*% t(x3) %*% y
betahatsim[s,] <- betahat

epshat <- y - x3 %*% betahat
sigmahatsqgr <- sum(epshat™2) /7 (n - k3)
sigmahatsqrsim[s] <- sigmahatsqr

varbetahat <- sigmahatsqr * solve(t(x3) %*% x3)
beta3se <- varbetahat[3,3]".5
tstat3sim[s] <- (betahat[3] - betaO[3]) / beta3se

robustmeat <- matrix(rep(0,16),4)

for(i in 1:n) {
robustmeat <- robustmeat + epshat[i1]"2*x3[1,]%*%t(x3[i,])
3
robustmeat <- robustmeat / n
robustbread <- solve(t(x3) %*% x3 /7 n)
varbetahatrobust <- robustbread %*% robustmeat %*% robustbread / n

beta3serobust <- varbetahatrobust[3,3]".5
zstat3sim[s] <- (betahat[3] - betaO[3]) / beta3serobust

inside the loop. Notice that ,5’ is computed as (X'X)™* X'y, &7 is computed as - £'& where

E=y— X,E’, the variance of ,3 is estimated to be &2 (X ' X)™, the sandwich estimator of the

-1

N -1 N N
variance is computed as (ﬁ D XX, j (ﬁz X X '8 J (ﬁ D XX, j , a t-statistic for the test that
n=1 n=1 n=1

L., =1 is computed based on the classical standard error, and a z-statistic for the test that g, =1

is computed based on the robust standard error. You can then evaluate the performance using,

OLS Unbiased / Consistent (LLN)
colMeans(betahatsim)
betal

mean(sigmahatsqgrsim)
sigma0”™2

tstat
mean(abs(tstat3sim) > qt(0.975,n-k3))

zstat w/ robust standard errors (CLT)
mean(abs(zstat3sim) > gnorm(0.975))

Simulate the model with n <- 10, n <- 100, and n <- 1000. Repeat the same exercise

with the following heteroskedastic error terms,

eps <- rep(0,n)
for(i in 1:n) {
eps[i] <- rnorm(1) * x3[1,3]"2

For both cases, and for all three sample sizes, report whether OLS appears to be unbiased and
consistent with reference to the simulations. Report whether the t-test and the z-test appear to

have the correct size. Include your r code and output in your homework assignment.

Which assumptions from (A1)-(A7) and (B1)-(B8) does the data you generate satisfy?

How do the results of the simulations compare to properties we derived for the OLS estimator?

2. Present a heuristic proof of each of the following. Indicate the set of assumptions you are
using (and assume that the X’s are stochastic).

@) OLS is unbiased.

(b) OLS is consistent.

(©) OLS is asymptotically normal with mean £, and variance covariance matrix

V = E[x x, TVar(x.&,)E[x X, T".

