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Assignment 2 

 
 

 

 

 

 

1. Set the sample size n <- 1000 and the number of variables k <- 3. In r, you can 

simulate a normal random matrix using the command, x <- matrix(rnorm(n*k),n). Verify 

that the resulting matrix has (approximately) a mean of zero and a variance matrix equal to the 

identity using the commands colMeans(x) and var(x). Next, use the Cholesky decomposition 

to simulate a ( , )N    random variable where 
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 (hint: recall 

that if ~ (0, )x N I , then 1/2 ~ ( , )x N    and that the Cholesky decomposition can be 

computed using chol(omega)). Call the new matrix x2 (the dimensions can be made to work out 

correctly is you use x2 <- as.matrix(rep(1,n)) %*% t(as.matrix(mu)) + x %*% 

chol(omega). Remember that in order to perform matrix multiplication in r, you should use %*%  

as * will perform component by component multiplication. Check that this worked using the 

commands colMeans(x2) and var(x2). Verify that   is indeed positive definite by computing 

the eigenvalues of omega using the command eigen(omega). 

 Now, suppose that you were using this to simulate data from a linear regression model. 

Add a constant term to the matrix x3 using the code, 
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k3 <- k + 1 
x3 <- matrix(rep(0,n*k3),n) 
x3[1:n,1] <- 1 
x3[1:n,2:k3] <- x2[1:n,1:k] 
 
Generate the errors vector eps from the 2(0,2.8 )N  distribution (setting sigma0 <- 2.8). 

Assume that 0 (0.5, 2,1,0.7)   . Generate data from a linear regression model with x3 and the 

data matrix and eps as the error term. Run a linear regression on this data using, 

lm1 <- lm(y~x3) 
summary(lm1) 
 

What value of ̂  do you find and how does this compare to 0 ? Is ̂  very close to 0 , and if 

so, why? Verify that you get the same answer using betahat <- solve(t(x3) %*% x3) %*% 

t(x3) %*% y. 

 Now, we will imbed this code in a loop to perform a Monte Carlo simulation. Set the 

number of replications as S <- 1000. Imbed the code you previous wrote in a loop, 

betahatsim <- matrix(rep(0,S*k3),S) 
sigmahatsqrsim <- rep(0,S) 
tstat3sim <- rep(0,S) 
zstat3sim <- rep(0,S) 
for(s in 1:S){ 

# code here 
} 
 

(of course, you may put code like n <- 1000  before the loop). The top lines will allow you to 

collect the simulations. You can simulate the main components of the model using, 

y <- x3 %*% beta0 + sigma0 * eps 
 betahat <- solve(t(x3) %*% x3) %*% t(x3) %*% y 
 betahatsim[s,] <- betahat 
  
 epshat <- y - x3 %*% betahat 
 sigmahatsqr <- sum(epshat^2) / (n - k3) 
 sigmahatsqrsim[s] <- sigmahatsqr 
  
 varbetahat <- sigmahatsqr * solve(t(x3) %*% x3) 
 beta3se <- varbetahat[3,3]^.5 
 tstat3sim[s] <- (betahat[3] - beta0[3]) / beta3se 
 
 robustmeat <- matrix(rep(0,16),4) 
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 for(i in 1:n) { 
  robustmeat <- robustmeat + epshat[i]^2*x3[i,]%*%t(x3[i,]) 
 } 
 robustmeat <- robustmeat / n 
 robustbread <- solve(t(x3) %*% x3 / n) 
 varbetahatrobust <- robustbread %*% robustmeat %*% robustbread / n 
 beta3serobust <- varbetahatrobust[3,3]^.5 
 zstat3sim[s] <- (betahat[3] - beta0[3]) / beta3serobust 
 

inside the loop. Notice that ̂  is computed as 1( ' ) 'X X X y , 2ˆ  is computed as 1 ˆ ˆ'N K    where 

ˆˆ y X   , the variance of ̂  is estimated to be 2 1ˆ ( ' )X X
 , the sandwich estimator of the 

variance is computed as 
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03 1   is computed based on the classical standard error, and a z-statistic for the test that 03 1   

is computed based on the robust standard error. You can then evaluate the performance using, 

# OLS Unbiased / Consistent (LLN) 
colMeans(betahatsim)  
beta0 
 
mean(sigmahatsqrsim) 
sigma0^2 
 
# tstat 
mean(abs(tstat3sim) > qt(0.975,n-k3)) 
 
# zstat w/ robust standard errors (CLT) 
mean(abs(zstat3sim) > qnorm(0.975)) 
 

 Simulate the model with n <- 10, n <- 100, and n <- 1000. Repeat the same exercise 

with the following heteroskedastic error terms, 

eps <- rep(0,n) 
for(i in 1:n) { 
 eps[i] <- rnorm(1) * x3[i,3]^2 
} 
 
For both cases, and for all three sample sizes, report whether OLS appears to be unbiased and 

consistent with reference to the simulations. Report whether the t-test and the z-test appear to 

have the correct size. Include your r code and output in your homework assignment. 
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Which assumptions from (A1)-(A7) and (B1)-(B8) does the data you generate satisfy? 

How do the results of the simulations compare to properties we derived for the OLS estimator? 

 

2. Present a heuristic proof of each of the following. Indicate the set of assumptions you are 

using (and assume that the X’s are stochastic). 

(a) OLS is unbiased. 

(b) OLS is consistent. 

(c) OLS is asymptotically normal with mean 0  and variance covariance matrix 

1 1[ '] ( ) [ ']n n n n n nV E x x Var x E x x  . 


