Chapter 2

Sampling and Measurement
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instance, variation occurs from person to person in characteristics such as income, 1Q,
political party preference, religious beliefs, marital status, and musical talent. We shall
see that the nature and the extent of the variability has important implications both on
descriptive and inferential statistical methods.

Variables

A characteristic measured for each subject in a sample is called a variable. The name

refers to the fact that values of the characteristic vary among subjects in a sample or
population.

Variable

A variable is a characteristic that can vary in value among subjects in a sample or
population.

Each subject has a particular value for a variable, but different subjects may pos-
sess different values. Examples of variables are gender (with values female and male),
age at last birthday (with values 0, 1, 2, 3, and so on), religious affiliation (Protestant,
Roman Catholic, Jewish, Other, None), number of children in a family (0, 1,2,...),
and political party preference (Democrat, Republican, Independent). The possible val-
ues the variable can assume form the scale for measuring the variable. For gender, for
instance, that scale consists of the two labels, female and male.

The valid statistical methods for analyzing a variable depend on the scale for its
measurement. We treat a numerical-valued variable such as annual income (in thou-
sands of dollars) differently than a variable with a scale consisting of labels, such as
political preference (with scale Democrat, Republican, Independent). We next intro-
duce two ways to classify variables that determine the valid statistical methods. The
first refers to whether the measurement scale consists of labels or numbers. The sec-
ond refers to the number of levels in that scale.

Qualitative and Quantitative Data

Data are called qualitative when the scale for measurement is a set of unordered cat-
egories. For example, marital status, with categories (single, married, divorced, wid-
owed), is qualitative. For Canadians, the province of one’s residence is qualitative, with
the categories Alberta, British Columbia, and so on. Other qualitative variables are re-
ligious affiliation (with categories such as Catholic, Jewish, Muslim, Protestant, Other,
None), gender (female, male), political party preference (Democrat, Republican, Inde-
pendent), and marriage form of a society (monogamy, polygyny, polyandry). For each
variable, the categories are unordered; the scale does not have a “high” or “low” end.
For qualitative variables, distinct categories differ in quality, not in quantity or mag-
nitude. Although the different categories are often called the levels of the scale, no level
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is greater than or smaller than any other level. Names or labels such as “Alberta” and
“British Columbia” identify the categories, but those names do not represent different
magnitudes of the variable.

When the possible values of a variable do differ in magnitude, the variable is called
quantitative. Each possible value of a quantitative variable is greater than or less than
any other possible value. Such comparisons result from variables having a numeri-
cal scale. Examples of quantitative variables are a subject’s annual income, number
of years of education completed, number of siblings, and number of times arrested.

The set of categories for a qualitative variable is called a nominal scale. For in-
stance, a variable pertaining to one’s mode of transportation to work might use the nom-
inal scale consisting of the categories (car, bus, subway, bicycle, walk). A set of numer-

ical values for a quantitative variable is called an interval scale. Interval scales have a
specific numerical distance or “interval” between each pair of levels. Annual income
is usually measured on an interval scale; the interval between $40,000 and $30,000, for
instance, equals $10,000. We can compare outcomes in terms of how much larger or
how much smaller one is than the other, a comparison that is not relevant for a nominal
scale.

A third type of scale falls, in a sense, between nominal and interval. It consists of
categorical scales having a natural ordering of values, but undefined interval distances
between the values. Examples are social class (classified into upper, middle, lower),
political philosophy (measured as very liberal, slightly liberal, moderate, slightly con-
servative, very conservative), and government spending on the environment (classified
as too little, about right, too much). These scales are not nominal, because the cate-
gories are naturally ordered. The levels are said to form an ordinal scale.

Ordinal scales consist of a collection of ordered categories. Although the categories
have a clear ordering, the distances between them are unknown. For example, a person
categorized as very liberal is more liberal than a person categorized as slightly liberal,
but there is no numerical value for how much more liberal that person is.

Both nominal and ordinal scales consist of a set of categories. Each observation
falls into one and only one category. Variables having categorical scales are called cat-

egorical variables. While the categories have a natural ordering for an ordinal scale,
they are unordered for a nominal scale. For the categories (Catholic, Jewish, Muslim,
Protestant, Other, None) for religious affiliation, it does not make sense to think of one
category as being higher or lower than another.

The various scales refer to the actual measurement of social phenomena and not
to the phenomena themselves. Place of residence may indicate the geographic place
name of one’s residence (nominal), the distance of that residence from a point on the
globe (interval), the size of one’s community (interval or ordinal), or other kinds of

sociological variables.

Quantitative Nature of Ordinal Data

As we've discussed, data from nominal scales are qualitative—distinct levels differ in

quality, not in quantity. Data from interval scales are quantitative: distinct levels have

differing magnitudes of the characteristic of interest. The position of ordin:
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Discrete and Continuous Variables

A variable is discrete if it can take on a finite number of values and continuous if it can

take an infinite continuum of possible real number values.

Examples of discrete variables are number of children (measured for each family),
number of murders in the past year (measured for each census tract), and number of vis-
its to a physician in past year (measured for each subject). Any variable phrased as “the
number of ...” is discrete, since one can list all the possible values {0, 1,2,3,4,...)
for the variable. (Strictly speaking, there could be an infinite number of values for such
a variable, namely, all the nonnegative integers. As long as the possible values do not
form a continuum, the variable is still said to be discrete.)

Examples of continuous variables are height, weight, age, and the amount of time
it takes to read a passage of 2 book. It is impossible to write down all the distinct po-
tential values of a continuous variable, since they form a continuum. The amount of
time needed to read a book, for example, could take on the value 8.6294473 ... hours.

With discrete variables, one cannot subdivide the basic unit of measurement. For
example, 2 and 3 are possible values for the number of children in a family, but 2.571
is not. On the other hand, a collection of values for a continuous variable can always
be refined; that is, between any two possible values, there is always another possible
value. For example, an individual does not age in discrete jumps. Between 20 and 21
years of age, there is 20.5 years (among other values); between 20.5 and 21, there is
20.7. At some well-defined point during the year in which a person ages from 20 to 21,
that person is 20.3275 years old, and similarly for every other real number between 20

and 21. A continuous, infinite collection of age values occurs between 20 and 21 alone.

Qualitative variables are discrete, having a finite set of unordered categories. In
fact, all categorical variables, nominal or ordinal, are discrete. Quantitative variables
can be discrete or continuous; age is continuous, and number of times arrested is dis-
crete.

The distinction between discrete and continuous variables is often blurry in prac-
tice, because of the way variables are actually measured. Continuous variables must be
rounded when measured, so we measure them as though they are discrete. We usually
say that an individual is 20 years old whenever that person’s age is somewhere between
90 and 21. Other variables of this type are prejudice, intelligence, motivation, and other
internalized attitudes or orientations. Such variables are assumed to vary continuously,
but measurements of them describe, at best, rough sections of the underlying continu-
ous distributions. A scale of prejudice may have discrete units from 0 to 10, but each
discrete value is assumed to include all values within a certain continuous range of the
degree of prejudice.

On the other hand, some variables, though discrete, may take on a very Jarge num-
ber of different values. In measuring annual family income in thousands of dollars,
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tion in a year. She took a systematic sample, with k = 7, sampling every Friday’s record.
The average daily receipt for this sample was then used to estimate the yearly receipts.

26. You plan to sample from the 5000 students at your college in order to compare the pro-
portions of men and women who believe that women should have the right to an abortion.
a) Explain how you would proceed, if you want a simple random sample of 100 students.
b) How would you proceed if you want a systematic random sample?
¢) You use a random number table to select students, but you stop selecting females as
soon as you have 50, and you stop selecting males as soon as you have 50. Is the result-
ing sample a simple random sample? Why or why not?

27. In a systematic random sample, every subject has the same chance of selection, but the
sample is not a simple random sample. Explain why, by showing that every possible sam-
ple of size n is not equally likely.

28. I need to collect data for a sample of residents of registered nursing homes in my state. I
obtain from the state a list of all nursing homes, which I number from 1 to 317. Beginning
randomly, I choose every tenth home on the list, ending up with 31 homes. I then obtain
lists of residents from those 31 homes, and I select a simple random sample from each
list. What kinds of sampling have I used?
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Chapter 3

Descriptive Statistics

Onf: of the two primary reasons for using statistical methods is to summarize and d
scribe data, to make the information easier to assimilate. This chapter presents comm <
methods of data description. The first section discusses statistical descri tion thro 0:]
the use of tables and graphs. These tools provide a summary picture of tﬁc data =
We therll present ways of describing the data with numerical measures Sccli;an 32
def‘l‘nes statistics that describe the center of a collection of data—in other W(')rds a“t Ii
ca} measurement in the sample. Section 3.3 introduces statistics that describe 'lhe vfrsi:
ation _o_f the data about that center. The final section distinguishes between statistics
describing samples and related parameters describing populations. i

?.3.1 Tabular and Graphical Description

Example 3.1 State Murder Rates

m‘«'v::;;s; tll;je c[l;ue_l in Table 3.1 to il_lusiratc descriptive methods. This table lists all 50
b= ofe ::dncd ISlates and t‘helr 1993 murder rates. The murder rate measures the
P mquu ers c1|n that state in 1_993 per 100,000 population. For instance, if a state
AT _e;s ;:ln a_po;_:-ulauon size of 2,300,000, its murder rate was (120/2,300,000)
g2 ‘,v —1— 2. It is difficult to learn mgch by simply reading through the murder

s. We will use tables, graphs, and numerical measures to understand these data more

' fully.
O
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TABLE 3.1 List of States with 1993 Murder Rates Measured
as Number of Murders per 100,000 Population

Alabama 1.6 Louisiana 20.3 Ohio 6.0
Alaska 9.0 Maine 1.6 Oklahoma 3.4
Arizona 8.6 Maryland 12.7 Oregon 4.6
Arkansas 10.2 Massachusetts 39 Pennsylvania 6.8
California 13.1 Michigan 9.8 Rhode Island 39
Colorado 58 Minnesota 34 South Carolina  10.3
Connecticut 6.3 Mississippi 13.5 South Dakota 34
Delaware 5.0 Missouri 11.3 Tennessee 10.2
Florida 8.9 Montana 3.0 Texas 11.9
Georgia 114 Nebraska 39 Utah 3.1
Hawaii 3.8 Nevada 10.4 Vermont 3.6
Idaho 35 New Hampshire 2.0 Virginia 8.3
linois 11.4 New Jersey 5.3 ‘Washington 5.2
Indiana 15 New Mexico 8.0 West Virginia 6.9
Towa 23 New York 13.3 Wisconsin 44
Kansas 6.4 North Carolina 11.3 Wyoming 34
Kentucky 6.6 North Dakota LEge s

Frequency Distributions

Rather than simply listing all the separate observations, as Table 3.1 does, we can sum-
marize the data. A common summary method divides the measurement scale into a set
of intervalsand totals the number of observations in each interval. A frequency distri-
bution, defined next, does this.

Frequency Distribution

A frequency distribution is a listing of intervals of possible values for a variable, to-
gether with a tabulation of the number of observations in each interval.

To construct a frequency distribution for murder rate, for example, we divide the
possible murder rate values into separate intervals. We then count the number (fre-
quency) of states in each interval.

We must first select a set of intervals for murder rate. Or computer statistical soft-
ware such as SAS or SPSS chooses them for us. SAS, for instance, uses the intervals
{0-2.9,3.0-5.9, 6.0-8.9, 9.0-11.9, 12.0-14.9, 15.0-17.9, 18.0-20.9} for the number
of murders per 100,000 population. Counting the number of states with murder rates
in each interval, we get the frequency distribution shown in Table 3.2. It is clear from
looking at this frequency distribution that considerable variability exists in statewide
murder rates, with one state being considerably higher than the rest. As with any sum-
mary method, some information is lost as the cost of achieving some clarity. The fre-
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TABLE 3.2 Frequency Distribution
of Murder Rates for the 50 States

Murder Rate Frequeln_cy_"
(No. Murders per 100,000)  (No. States)
0.0-29 5
3.0-59 16
6.0-89 12
9.0-11.9 12
12.0-14.9 4
15.0-17.9 0

quency distribution does not identify which stz i
o 1 g y which states have low or high murder rates, nor
cqu':‘]h\i ilgtt;r\[fgls ofd;::lues for the categories in frequency distributions are usually of
; the width equals 3 in Table 3.2. The intervals should i i
values of the variable. In addition, an i i
: ! 3 , any possible value must fit i a
interval; that is, they should be mutually exclusive. T o e
e ;IJ:E ;1[_1;1}-:1;:?::;{ 1nt;1rvals inba fre;quency distribution depends both on the judgment of
s and on the number of observations to be classified. Usunal
number of observations, the greater the number of i s e
7 of intervals used. If too many i i
are used (say, more than 15), they are so narrow i i T by
; s s § that the information is diffi
cultto digest, and an overall i S
= pattern in the results may be obscured. If i
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vations that are not very similar. Follow this gene ideli L
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TABLE 3.3 Relative Frequency Distribution
and Percentages for Murder Rates e

Murder Relative

Rate Frequency quumf_l’ememage
0.0-29 5 10 10.0
3.0-5.9 16 32 32.0
6.0-8.9 12 24 24.0
9.0-11.9 12 24 24.0
12.0-14.9 4 .08 8.0
15.0-17.9 0 00 0.0
18.0-209 1 _.02 B

Total 50 1.00 1000

The relative frequency equals the number of observations in an interval divided by
the total number of observations. For instance, for the murder rates, the relative fre-
quency for the first interval in Table 3.2 is 5/50 = .10; that is, 5 states out of 50, for a
relative frequency of .10, had murder rates between 0 and 2.9. The relative frequency
is a proportion—a number between 0 and 1 that expresses the share of the observations
falling in that interval. A listing of these, by interval, provides arelative frequency dis-
tribution. We construct the relative frequency distribution for the data on murder rates
in Table 3.2 by dividing each frequency by 50, the total number of states. Table 3.3
shows it.

More often, relative frequencies are recorded as percentages rather than propor-
tions. A percentage is simply a relative frequency multiplied by 100: that is, the deci-
mal place is moved two positions to the right. For example, 5 /50 = .10 is the relative
frequency for the interval 0-2.9, and 100(. 10) = 10 is the percentage. Table 3.3 also
shows the relative frequency distribution as a percentage distribution.

The total sum of the proportions equals 1.00, and the sum of the percentages equals
100. The process of rounding may lead to slightly different totals, such as 100.1 or
99.9. When presenting relative frequencies in a table, always include the total number
of cases upon which they are based. Obviously, the statement that 60% of a sample of

1000 individuals favor a decrease in the national defense budget is much more striking
than the same statement derived from a sample of 5 individuals.

Histograms and Bar Graphs
r a quantitative variable is called a histogram.
with height of the bar representing the
Figure 3.1 is a histogram for the murder

A graph of a frequency distribution fo
A bar is drawn over each interval of numbers,
relative number of observations in that interval.
rates, using the intervals in Table 32
Although guidelines exist for drawing histograms (see Tufte, 1983), it is primarily
As with frequency distributions, if too few intervals are

a matter of common sense.
Figure 3.2 is a histogram

used, too much information is lost or obscured. For example,
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ordmzi?twc_ chque‘ncxes are l._iseful for data of any type. For categorical (nominal or

variables, instead of intervals of numbers we use the categorical scale for the

variable. In that case, tt e ;
i he graph of the relative frequencies for those categories is called

Example 3.2 Bar Graph of Family Household Structure

T: i entz i

inatl);cgi,41:|§ts p;;lu.‘entages of different types of family households in the United States

o ;iu‘ . :]z :u c]:efnt in such a table to report just the percentages and the total sam-
size, each frequency equals the corresponding proportion multiplied by the
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Histogram for Murder Rates,

Murder Rate (per 100,000) Using Crude Intervals
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left of the vertical bar and a leaf is a number to the right of it. For the murder rates, the
stem is the whole part of a number, and the leaf is the fractional part. For instance,

TABLE 3.4 Family Structure, U.S. Families, 199_4“ e i on the first line, the stem of 1 and the leaves of 6 and 7 represent the murder rates 1.6
_-—Wamily " Number (millions) Percentage and 1.7. On the second line, the stem of 2 has leaves of 0, 3, 9, representing the murder
_ 5] 36.6 rates 2.0, 2.3, and 2.9.
Married couple with children " 4.0 :
Married couple, no children 28.1 S Ste_m‘ and leaf plots arrange the leaves in order on each line, from smallest to largest.
Single mother with children 1.6 s Two-digit stems refer to double-digit numbers; for instance, the last line has a stem of
Single father with children éi i 20 and a leaf of 3, representing the murder rate 20.3.
Other families Eé_s %9 A stem and leaf plot conveys much of the same information as a histogram. Turned
Toealii — on its side, it has the same shape as the histogram. In fact, since one can recover the
Source: U.S. Bureau of the Census, Current Population Reports. salmple measurements from the stem and leaf plot, it displays information that is lost
o ' ) with a histogram. For instance, from Figure 3.4, the largest murder rate for a state was
. e size. For instance, the frequency of single-mother farmhef" with children 203 :'md the smallest was 1.6. It is not possible to determine these exact values from
tota ls an;};l 68 5') — 7.6 million. Figure 3.3 presents the same data in a bar gfapg- the histograms in Figures 3.1 and 3.2,
3 equals . S i sable. the order of the bars is not determined.
Since family structure 1s @ nominal variable, ‘bly for an “other”
: ordered by frequency, except possibly R
By Convem}l?n#]i]:){i::;:l ulit;ill):r b o gf prgsentalion for an ordinal classification Stem Leaf
category, whic 1 ariable. The bars in a bar graph, unlike T [T
i atural ordering of the levels of the variable. 11 : T Pt
1lsn T;i;ogram are sciarated to emphasize that the variable is categorical rather thaS ; g ? 3 R
i 1 (quantitative). 4 14 6
interval (g 30 B S
5 6 |0 3 4 6 8 9
Relative 7 5
frequency LR St R SR
of family o 9.7 |=olsus
structure ; 10 o |
1F Saeial: 4 4 600
12|
187 [T st s
14
15
16
17
18
0.1 19
20 |3
00 | ied] Mother Father, Other :
Married, M:'Ii‘:h e chitdeen Figure 3.4 Stem and Leaf Plot for Murder Rate Data in Table 3.1

no .
children  children

Figure 3.3 Relative Frequency of Family Structure Types, U.S. Families, 1994 : S_tcm and leaf plots are useful for quick portrayals of small data sets. As the sample
Slze Increases, you can accommodate the increase in leaves by splitting the stems. For
Instance, you might list each stem twice, putting leaves of 0 to 4 on one line and leaves
of 5 10 9 on another. When a number has several digits, it is simplest for graphical
Pan:rayal to drop the last digit or two. For instance, for a stem and leaf plot of annual
Income in thousands of dollars, a value of $27.1 thousand has a stem of 2 and a leaf of

7 and a value of $106.4 thousand has a stem of 10 and leaf of 6.

Stem and Leaf Plots .

Figure 3.4 shows an alternative graphical represcr;ltatgon of tuhe n;;ricsrlr;tgi::ts,igit(s) i
. called a stem and leaf plot, represents each observation by X o

?til;r:rem) and by its final digit (the leaf). In Figure 3.4, each stem is a number 0




42 Chap. 3 Descriptive Statistics

Comparing Groups

Many studies compare different groups with respect to their distribution on some vari-
able. Relative frequency distributions, histograms, and stem and leaf plots are useful

for describing differences between the groups.

Example 3.3 Comparing Canadian and U.S. Murder Rates
provinces of Canada. The rates are

Table 3.5 shows recent annual murder rates for the
tegory of Table 3.2 or the first bar

all less than 3.0, so they would all fall in the first ca
of the histogram in Figure 3.1.

TABLE 3.5 Canadian Provinces and Their Murder Rates
(Number of Murders per 100,000 Population)

Alberta 27 British Columbia 2.6
Manitoba 2.9 New Brunswick 1.1
Newfoundland 1.2 Nova Scotia 1.3
Ontario 2.0 Prince Edward Island 0.7
Quebec 2.3 Saskatchewan __i

Source: Canada Year Book, 1992.

Stem and leaf plots can provide simple visual comparisons of two relatively small
samples ona quantitative variable. For ease of comparison, the results are plotted “back
1o back™; each plot uses the same stem, with leaves for one sample to its left and leaves
for the other sample to its right. To illustrate, Figure 3.5 shows back-to-back stem and
leaf plots of the murder rate data for the United States and Canada. From this figure, it
is clear that the murder rates tend to be much lower in Canada. o

Sample and Population Distributions

Frequency distributions and histograms for a variable apply both to a population and
to samples from that population. The first type is called the population distribution
of the variable, and the second type is called a sample distribution. In a sensc, the
sample distribution is a blurry photograph of the population distribution. As the sample

size increases, the sample proportion in any interval gets closer to the true population
proportion. Thus, the photograph gets clearer, and the sample distribution looks more
like the population distribution.

When a variable is continuous, one can choose the intervals for a histogram as nar-
row as desired. Now, as the sample size increases indefinitely and the number of in-
tervals simultaneously increases, with their width narrowing, the shape of the sample
histogram gradually approaches a smooth curve. This text uses such curves to repre-
sent population distributions. Figure 3.6 shows two sample histograms, one based on
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Canada | Stem | United States
1| o
< P R 1 6 7
917 60 30200 2 0 3 9
3 0 1 4 4 4
2 g1 6 8 9 9 9
g 0 2 3 8
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g : 8 9
8 0 3 4 6 9
9 0 8
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11 3 3 4 4
12 7 e
13 .
14
15
16
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18
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20 3

Figure 3.5 Back-to-Back Stem an at Flots for Murder Rate Data from nd Canada
k-to-Back Ste id Leaf Plots for Murder Rate Data from U.S. and Canad
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Figure 3.6 Histograms for a Continuous Variable
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. 3 : 2 easuring Central Tendency—The Mean
hereas in the bell-shaped distribution, the highest point s g tra y

the lowest and highest scores, W

| { g e e g lariza- ;
i\ is near the middle value of the variable. A U-shaped dm';‘itﬁ':gﬁ?}:;:pcpj distri- The next two sections present statistics that describe the center of a frequency distri-
18 ents of the group,

1 d h 3 f: ~entral val . istics sh & : !
bjects tend to fall close to a centra value. bution. The f -

utl indi at most subjec a

bution 1n cates that 5 ] uti g

Relative The Mean
Relative | frequency
frequency The best known and most frequently used measure of central tendency is the mean, a
description of the average response.
Mean
U-shaped
The mean is the sum of the measurements divided by the number of subjects.
! e e s ) High : ¢ ; :
S High Low o The mean is often called the average. We illustrate the mean and its calculation
e i ; :
e Vaiebia Nalcs af (e 4 with the following example.
. istributions . A
Figure 3.7 U-Shaped and Bell-Shaped Frequency Distributi Example 3.4 Female Economic Activity in Europe
s e
: Kioat i Table 3.6 shows an index of female economic activity for the countries of Western and
i . ic. Most dis- 2 5
The bell-shaped and U-shaped distributions 1n Figure 3.7 are symmelrt Eastern Europe in 1994 (data were not available for Germany). The number reported
e bell-

nces are not exactly symetﬁc. Fig-
jowest values and the highest values
distribution is said to be ske wed

refers to female employment, as a percentage of male employment. In Austria, for in-

. ied i social sciel i :
tributions of variables studied in the stance, the number of females in the work force was 60% of the number of males in the

ure 3.8 illustrates. The parts of the curve for the

T e ric work force.
are called the fails of the dlsmbutu‘m- A;;Ti:n;lih tail is longer. : The table lists six observations for Eastern Europe. For these data, the sum of the
to the right or skewed to the left, according measurements equals 88 + 84 + 70 + 77 + 77 + 81 = 477. The mean economic activity
; Relative ] for these countries equals 477/6 = 79.5. By comparison, you can check that the mean
?{i‘:ﬁ;‘;“'q frequency i for the Western European countries equals 722/13 = 55.5, considerably lower. (Th
values in the United States and Canada were 65 and 63.) m}

Skewed to the

Skewed to the et

right

We now introduce notation for the mean. We use this notation in a formula for the
mean and in formulas for other statistics that use the mean.

Exam Score

Income Notation for Observations and Sample Mean

Frequency Distributions o ; ¥ ; 3
Figure 3.8 Skewed Frequency The sample size is symbolized by n. For a variable denoted by ¥, its observations are
denoted by ¥,, Y3, ..., ¥,. The sample mean is denoted by Y.

i ion hi It

i for a sample approximates the corrcqundmg popula&(in(};g:;eg;z?be‘

'A S ibe the difference between the two hlstograrns‘_or' e

b de$0ﬂ_h€ tions for two groups, using numerical descriptive merdcr r;“e o

tween sample distribw make comparisons such as “On the average, t}:nc mu b
U methg)ds, ;J;G Cri:‘ than the murder rate for Canadian provinces.” Weno

bt rically describing data.

. Throughout the text, n denotes the sample size. The n sample observations on a

variable ¥ are denoted by ¥; for the first observation, ¥, the second, and so forth up

ito ¥y, the last observation made. For example, for female economic activity in Eastern
urope, n = 6, and the observations are ¥, = 88, ¥, = 84, ..., Y, = ¥s = 81.

attention to ways of nume
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ivity i - Em-
TABLE 3.6 Female Economic Activity in Eurc;pe, Female
ployment as a Percentage of Male Employmen

Europe
Westem Europe __E*fﬂ__imy_
Country Activity Country -
tria 60 Bulgaria : 4
Aul.s i m 47 Czech Republic o
D gluark 77 Hungary o
D“'“ml 64 Poland i
Frﬂl:lﬂ*‘-j 41 Romania
llfe:"“ 44 Slovakia 81
taly
Metherlands 42
MNorway 68
Portugal 51
: Spain 3l
: Sweden 7
Switzerland 60 :
ited Kingdom 60 : . ‘
S‘_Um Human Development Report 1995, United Mations Development
Source:
Programme.
«y_bar.” Other symbols are also some-

Y le mean is read as ;
b SYdl\_l_bOI er:;‘:u}:]: SSTJTI?:;‘;: or Z. A bar over the symbol represents the sample
times used T0r v ’ Al

sents ean for a vari-
f data for that variable. For instance, X represents the sample m
mean of dat
d by X. s . :
abieT?lf:ngz:ﬁniI?on of the sample mean implies that it equals
. Nh4ht-th
Y= _.-—-—-ﬂ—'_'_'

summing. For
mbol T (uppercase Greek letter sigma) rcpresenrt[; ﬂ:cs p;lo;e):;ss ::fn e
The . TY; represents the sum Y+ Y+t YE" |.1 y B,
lﬂfSl;ﬁC;‘ al\;cs where the index i represents a typical value 2
of the ¥-v 5
illustrate, for the Eastern European data, 4
}"JZY[+Y2+Y_1+Y4+}’5+Y5=

i i jon sym-
even further abbreviated as T Y. Using this \summa{:;ls y
e sample mean of n measurements,

symbol is sometimes :
E:r \::e have the shortened expression for thi
; R
Yy=—

n

Properties of the Mean . : G
i ; senting additional examples, we consider some basic propertics
Before pre:

e The formul: for the mean as umes numerica values Y Y, for the ob-
3 YZ ceradn
5 merl 1 I 1s s
a he mean ass . %
servations. Because of ﬂlllS, the mean 18 appropnate 1:)"13'r for ql.la[ll.ltatl (< data. It
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is not sensible to compute the mean for observations on a nominal scale. For in-
stance, for religion measured with categories such as (Protestant, Catholic, Jew-
ish, Other), the mean religion does not make sense, even though these levels may
sometimes be coded by numbers for convenience. Similarly, we cannot find the
mean of observations on an ordinal rating such as excellent, good, fair, and poor,
unless we assign numbers such as 4, 3, 2, 1 to the ordered levels, treating it as
quantitative.

The mean can be highly influenced by an observation that falls far from the rest
of the data, called an outlier.

Example 3.5 Effect of Outlier on Mean Income

The owner of a small store reports that the mean annual income of employees in the
business is $37,900. Upon closer inspection, we find that the annual incomes of the
seven employees are $10,200, $10,400, $10,700, $11,200, $11,300, $11,500, and
$200,000. The $200,000 income is the salary of the owner’s son, who happens to be
an employee. The value $200,000 is an outlier. The mean computed for the other six

observations alone equals $10,883, quite different from the mean of $37,900 including
the outlier. 0

This example shows that the mean is not always representative of the measurements
in the sample. This is fairly common with small samples when one or more measure-

ments is much larger or much smaller than the others, such as in highly skewed distri-
butions.

e The mean is pulled in the direction of the longer tail of a skewed distribution,

relative to most of the data.
In Example 3.5, the large observation $200,000 results in an extreme skewness
to the right of the income distribution. This skewness pulls the mean above six
of the seven measurements. In general, the more highly skewed the frequency
distribution, the less representative the mean is of a typical observation.

e The mean is the point of balance on the number line when an equal weight oc-
curs at each measurement point. For example, Figure 3.9 shows that if an equal
weight is placed at each observation from Example 3.4, then the line balances by
placing a fulcrum at the point 79.5. The mean is the center of gravity of the ob-
servations. This property implies that the sum of the distances to the mean from
the observations above the mean equals the sum of the distances to the mean from
the observations below the mean.

. Dengtc the sample means for two sets of data with sample sizes n; and ny by }71
and Y,. The overall sample mean for the combined set of (n1+n2) measurements
is the weighted average

m¥) +n, ¥,
ny +na

F=
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the measurements, since n Y=

Vs i 1 |
4+ n,Y; is the total sum of a e P

tor my Y1 | :
Lt measurements. The denominator 18

3" ¥ for each set of

n Bl mu

2 = 7 =795
Economic Activity

Figure 3.9 The Mean as the Center of Gravity
ta in Table 3.6, the Western Eu-

the Eastern European meas-
75 ivity for the 19

i ivity dal
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=13 and ¥, = 55.5, ‘
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informative and occasionally more appropriate tha

sy equal numbers of subjects, when the

highest. It is a measure of central
the sample distribution of measure-

i ith
The median splits the sample into two pznl':,swwest %
subjects’ observations are ordercd_from e
tendency that better describes a typical valu

ments is highly skewed.

Median

i & ordered sam| le. When
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urement thal lls i
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To illustrate, the ordered income measurements for the seven employees in Exam-
ple 3.5 are $10,200, $10,400, $10,700, $11,200, $11,300, $11,500, and $200,000. The
median is the middle measurement, $11,200. This is a much more typical value for
this sample than the sample mean of $37,900. In this case, the median better describes
central tendency than does the mean. In Table 3.6, the ordered economic activity val-
ues for the Eastern European nations are 70, 77,77, 81, 84, and 88. Sincen = 6 is
even, the median is the midpoint between the two middle values, 77 and 81, which is
(77 +81)/2 = 79.0. This is close to the sample mean of 79.5, since this small data set
has no outliers.

Since a stem and leaf plot arranges the observations in order, it is easy to deter-
mine the median using such a plot. For the data in Table 3.1 on murder rates, Figure
3.4 shows the stem and leaf plot. Since the sample size n = 50 is even, the median is
the midpoint between the middle measurements, the 25th and 26th smallest. Counting
down 25 leaves from the top of the plot, we find that 25th and 26th smallest values are
6.6 and 6.8. So, the median is (6.6 + 6.8)/2 = 6.7. The meanis ¥ = 7.3, some-
what larger than the median. This is partly due to the outlier observation of 20.3 for
Louisiana, which is considerably higher than the other observations. Turning Figure
3.4 on its side, we see that the murder rate values are skewed to the right.

The middle observation is the one having index (n+1)/2. That is, the median is the
value of the (n+1)/2nd measurement in the ordered sample. For instance, whenn = 7,
(n+1)/2 = (7+1)/2 = 4, so the median is the fourth smallest, or equivalently fourth
largest, observation. When n is even, (n + 1)/2 falls halfway between two numbers,
and the median is the midpoint of the measurements with those indices. For instance,

when n = 50, (n + 1)/2 = 25.5, so the median is the midpoint between the 25th and
26th smallest observations.

Example 3.6 Median for Grouped or Ordinal Data

Table 3.7 summarizes data on the highest degree completed for a sample of subjects
taken recently by the U.S. Bureau of the Census. The measurement scale grouped the
possible responses into an ordered set of categories. The sample size is n = 177,618.
The median score is the (n + 1)/2 = (177, 618 4 1)/2 = 88,809.5th lowest. Now,
38,012 responses fall in the first category, (38,012 + 65,291) = 103,303 in the first two,

TABLE 3.7 Highest Degree Completed, for a Sample of

Americans
Highest Degree Frequency Percentage
Not a high school graduate 38,012 21.4%
High school only 65,291 36.8%
Some college, no degree 33,191 18.7%
Associate's degree 7,570 4.3%
Bachelor's degree 22,845 12.9%
Master's degree 7,599 4.3%
Doctorate or professional 3,110 1.7%
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and so forth. The 38,013rd to 103,303rd lowest scores fall in category 2, which there-
fore contains the 88,809.5th lowest, which is the median. The median response is “High
school only.” Equivalently, from the percentages in the last column of the table, 21.4%
fall in the first category and (21.4% +36.8%) = 58.29 fall in the first two, so the 50%

=]

point falls in the second category.

Properties of the Median

o The median, like the mean, is appropriate for interval data. Since it requires only
t, it is also valid for ordinal data, as illustrated

ordered observations to compute i
in the previous example. It is not nominal data, since the obser-
vations cannot be ordered.

o For symmetric distributions, such as in Figure 3.7, the median and the mean are
identical. To illustrate, the sample of measurements 4,5,7,9,10is symmetric
about 7; 5 and 9 fall equally distant from it in opposite directions, as do 4 and 10.
Thus, 7 is both the median and the mean.

o For skewed distributions, the mean lies toward the direction of skew (the longer
tail) relative to the median, as Figure 3.10 shows. Income distributions tend to
be skewed to the right, though usually not as severely as in Example 3.5. The
mean household income in the United States in 1993, for example, was about
$8000 higher than the median household income of $31,000 (U.S. Bureau of the

Census, Current Population Reports).
Length of prison sentences tend to be highly skewed to the right. For instance, in
1994, for 67 sentences for murder imposed using U.S. Sentencing Commission
guidelines, the mean length was 251 months and the median was 160 months.
The distribution of grades on an exam tends to be skewed to the left when some
students perform considerably poorer than the others. In this case, the mean is
less than the median. For instance, suppose that an exam scored on a scale of 0
to 100 has a median of 88 and a mean of 76. Then most students performed quite

B

appropriate for

Relative

Relative
Frequency

Frequency

N T T
[ Mean— |
Median Median
Values of the Variable

Values of the Variable

Figure 3.10 The Mean and the Median for Skewed Distributions
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well (half being over 88), by
, but apparently some scores wi

. . - e -

i 'I]I;i:emajgmy _cf students in order to bring the mean down h: l;l'ﬁ}’ el
median is insensitive to the di '
: : stances of the meas 3 i
i v ¢ ces surements from tk
e it uses only the ordinal characteristics of the data. For exampl ;18 i
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Set2: 8, 9, 10, 11, 100
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I y outliers. For insta i
1 : nce, the incomes of th 3
?S $}é%csn :)r{l] Example 3.5 have a median of $11,200 whether the Iz i
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Example 3.7 Effect of Extreme Qutlier for Murder Rate Data

Table 3.1 contai
by datzt:;sdmurder l:atcs for the 50 states and has a mean of 7.3 and a median of
S ofo;gs not include Lhe‘DisT.rict of Columbia (D.C.), which had g
i 1 o inj;g;i:y F(;ur times that of Louisiana. This‘ is certainly :u:n ;l:
" is observation in the d. = :
ety , ata set, then n = 51. iz
S Et:culaa:fbin;.sltj obslcrvanon, has 2.5 smaller and 25 larger Observi::icmz lT:?e' mﬁe e
ettt ?a;et gr ;gecbt'd by including this outlier. On the other ﬁalidstll:c n%;:::
nges i .7, being considerably affected by the outli , I
outlier tends to be even greater when the sample size is :rnall at Elz:n;g;: ;fges?: 4 i:in
, as .5 showed.
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Median Compared to Mean
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ke o ;};‘ld é:r;alfzr I\:\-'hen the distribution is highly skewed, as \\.‘rc have ségn
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s (521:;:; ;;qpﬁg;ssugn;ﬁ:;ﬁa data, whereas the median also applies for ordinal
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lzr:),tzctyr{:sc:::c r.g;ne ‘Categfo;ei In Table 3.7, if we assign scorejsnilodail; mlqE»m:is 21‘868181;-
: ories of highest degre: i i “number of years of
bdu%;:|on‘ i - ng 13, ;cprcscntmg approximate number of years of
e - . e
GaTn rr:lca(:;:;al?:ﬁas lchsadvaptago.les, compared to the mean. For discrete data th
i i gr — values, quite different patterns of data can give the same r 1at
Sl ar‘mua]s[] % Ehablc 3:8, from tlhe General Social Survey of 1991. This S:SU .
e o y by the National Opinion Research Center (NORC) at t‘hB U;l‘ s
i S:Immr; : sample of adult American subjects about a wide variety Ofl“l-'sc:Slf?’
izes the 1514 responses in 1991 to the question, “Within the pa‘ ::1?2
stion, as
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TABLE 3.8 Number of People You Know
Who Have Committed Suicide

Response  Frequency Percentage

0 1344 88.8
1 133 8.8
2 25 1.7
3 11 7
4 Lt

months, how many people have you known personally that have committed suicide?”
Only five distinct responses occur, and 88.8% of those are 0. Since (n+ 1)M2=157.5,
the median is the midpoint between the 757th and 758th smallest measurements. But
those are both 0 responses, so the median response is 0.

To calculate the sample mean for Table 3.8, it is unnecessary to add the 1514 sep-
arate measurements to obtain T Y; for the numerator of ¥, since most values occurred
several times. To sum the 1514 observations, we multiply each possible value by the

frequency of its occurrence, and then add; that is,
ZY; — 1344(0) + 133(1) +25(2) + 11(3) + 1(4) =220

The sample size isn = 13444133425+ 1141 = 1514, 50 the sample mean response

is
¥ '{:ﬁ = —zin- =.15
n 1514
If the distribution of the 1514 observations among these categories were (758, 133,25,
11. 587) (i.e., we shift 586 responses from 0 to 4), then the median would still be 0, but
the mean would shift to 1.69. The mean uses the numerical values of all the observa-
tions, not just their ordering.

A more extreme form of this problem oc
only two values, such as (0, 1) or (low, high
outcome, but gives no information about the re

curs for binary data. Such data can take
). The median equals the most common
Jative number of observations at the two

levels.

Quartiles and Other Percentiles

The median is a special case of a more general set of measures of location called per-

centiles.

Percentile

The pth percentile is a number such that p% of the scores fall below it and (100 — p)%

fall above it.
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Substituting p = 50 in this definition gi

; L n th nition gives the 50th percentile. This is si
?;zd‘;::;c,r'ﬂl;zgols,_tl;% Jm(f]ajr{l} 3; la';ger than 50% of the measurements and ;r;ﬁsgrﬁﬁ
i a8 qug;;ffe_ . Two other commonly used percentiles are the lower

Lower and Upper Quartiles

The 25th percentile is called the & i
ot he lower quartile. The 75th percentile is called the upper

These refer to p = 25 and p = 75 in the i iti
] percentile definition. One quart

]d:‘t.:eiarliluzgii?:i:hﬁj lr:rw:::'l ‘quamlc. and one quarter fall above the upper ?]uan(i:;-e‘)f'lf:z
e I;alft; ;11' l(ain for the observations that fall below the median, T.I;al is
o dt' he ata.‘Thc upper quartile is the median for the observation;
ity o Iill(’: 1an,_1hall 1s,lf0r the upper half of the data. The quartiles togeth :

ian split the distribution into four parts, each containi Uscirad
measurements, as Figure 3.11 shows. ‘ G

25%
¥ R 25%
25% /
g Interquartile
range
/ 25%
L £y =
quartile Pt ql.'.am:; Figure 3.11 The Quartiles and

Interquartile Range

and\gli I::;E;::::Z w1tl11 the murdc!' rates from Table 3.2. The sample size isn = 50
g ?I.I;i S. 6.;. .As \_wlh the median, the quartiles can easily be found fron;
i belp ol ,hs.uc as Flgur.e 34 The lower quartile is the median for the 25
bt o thgw t(-;' median, which is the ].3th smallest observation, or 3.9. The up-
ke ;n 1&;?) l;or thc‘ 25 observations above the median, which is the 13th
i ,lor .3. This means that a quarter of the states had murder rates
gy n—;e;jian olfzr?y,aangl.]lja;t\irczf l6h$ sta;e]sgh;id {nurder rates below 3.9, between 3.9
| f6.7, n 6.7 and 10.3. The dista :

tile and the median is 10.3 — 6.7 = 3.6, which cxcccdsttllcf]il::;\:z: rt; I?CFUI;}]JQCT_QUZ&;
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between the lower quartile and the median. This commonly happens when the distri-

bution is skewed to the right.
We can summarize this information by repo rting a five-number summary, consisting
of the three quartiles and the minimum and maximum values. For instance, a popular

software package reports these as follows:

100% Max 20.3
75% Q3 10.3
50% Med 6.7
25% Q1 3.9

0% Min 1.6

The five-number summary provides a simpiefto—understand description of a data set.
rtiles is called the interquartile

The difference between the upper and lower qua
range. The middle half of the observations fall within that range. This measure de-
scribes variability of the data and is described further in Section 3.4. For the U.S. mur-
der rates, the interquartile range equals 10.3-3.9 = 6.4. The middle half of the murder
rates fall within a range of 6.4.

Percentiles other than the quarti
fairly large data sets, and we omit rules for

les and the median are usually reported only for
their calculation in this text.

The Mode

Another measure, the mode, describes a typical sample measurement in terms of the

most common outcome.

Mode

The mode is the value that occurs most frequently.

the mode is 0. The mode is more commonly used
with categorical data or grouped frequency distributions than with ungrouped observa-
tions. The mode is then the category of interval with the highest frequency. In the data
of Table 3.7 on the highest degree completed, for instance, the mode is “High school
only,” since the frequency for that category is higher than the frequency for any other
rating.

The mode need not be near the center of the distribution. In fact, it may be the
largest or the smallest value, if that is most common. Thus, it is somewhat inaccurate
to call the mode a measure of central tendency. Many quantitative variables studied
in the social sciences, though, have distributions in which the mode is near the center,
such as in bell-shaped distributions and in slightly skewed distributions such as those

in Figures 3.10 and il

In Table 3.8 on the suicide data,
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Properties of the Mode

e The mode is appropriate for all t i
s i ypes of data. For example, we might meas
;nodlal rghgmn (nominal level) in the United Kingdom, the modaigmting (:rl:i::icl
evel) given a legcher. or the modal number of years of education (interval level
completed by Hispanic Americans. W
3 frequency distribution is called bimodal if two distinct mounds occur in the
: ;sg‘;buuon, ljlmida] distributions often occur with attitudinal variables, when
sponses tend to be strongly in one direction or another, leadi izati
! : i , leading to polarizat
gf l_he population. F_or instance, Figure 3.12 shows the relative fgrequr::ncy ;::lfiislt?irf
ution o]{ responses in the 1991 General Social Survey to the question, “Do you
];ers$na y think it is Wrong or not wrong for a woman to have an aborxti(m if the
[?vr::ufr}; has a very lg"w income and cannot afford any more children?” The rela
quencies in the tw i i i iddle
i 0 extreme categories are higher than those in the middle
e The mean, median, and mode are identi i
; ) s cal for a uni 1 ic distri
tion, such as a bell-shaped distribution. iR

i q';[l':;,tli‘:lan:;ivceis not bals pOIpl‘J]a.r as the mean or median for describing central tendency
variables. It is useful when the most frequentl i i
able is relevant, which is often true fi i S i S iy
. X £ or categorical variables. The m i
tiles, and mode are complement: ‘ ol
S, : ary measures. They describe different aspects of
dat‘;_hjl ]einy pamculm: eg&amplc, some or all of their values may be useful i
ina y,‘th‘ese slausuc{s are sometimes misused, as in Example 3.5 ‘Peop]c who
E};'ccs;r:l: s;atgtt]l::al con_c]usmlr:s often choose the statistic giving the impression they wish
¢y. Other statistics that might provide somewhat diffi i etati i
nored. You should be on the lookout for mi i Lt
or misleading statistical analyses. For in:
: . stan
be wary of the mean when you think that the distribution may be highly skewed =

S0 -

Percent

Not Wrong  Wrong Almost  Always
at All Only Always  Wrong
Sometimes  Wrong

Figure 3.12 Bimodal Distribution
for Opinion about Abortion
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, 3.4 Measures of Variation : ;
! safl Nation A Sl
! A measure of central location alone is not adequate for numerically describing a fre- | Relative
| quency distribution. It describes a typical value, but not the spread of the data about Frequency
!I that value. The two distributions in Figure 3.13 illustrate. The citizens of nation A and
| the citizens of nation B have the same mean annual income ($25,000). The distributions
of those incomes differ fundamentally, however, nation B being much more homoge-
neous. An income of $30,000 is extremely large for a resident of nation B, though not . T T
especially large fora resident of nation A.. This section introduces statistics that describe Nation C
the variability of a data set. These statistics are called measures of variation.
Relative 0 I' 0 i{] 3- T
Frequency Nation B 0 10 30
Yearly Income (thousands of dollars)
Figure 3.14 Distributions with the Same Mean and Range, but Different Variations About the Mean
Variance and Standard Deviation
Nation A Other measures of variation iati
are based on the deviations of th
e data
central tendency, usually their mean. SUR 8 msnse of
= pas |
0 10 20 0 40 50
Yearly Income (thousands of dollars) Deviation
e : . o The deviation of the i i 5
Fi 3,13 Distributions with the Mean but Different Variability e ith observation ¥, ; T :
gure istributions with the Same Mean but Different Variabitily K aiaori thad: : from the sample mean Y is (¥; — Y), the difference

The Range : ! Each observation has a deviation. The deviation is positive when the observation

The difference between the largest and smallest observations in a sample is a simple ] r—? llss é:lgzve the 53?’1"‘3 mean and negal_ive \-‘vhen it falls below it. The interpretation of

measure of variation. o [h:c;'_::c;[i gr?v;}ty of the data implies that the sum of the positive deviations
s it 5 r ~ :

measures of variation use either the absolute vi?ieiagipt]}fé ?::::;icoofflﬁ‘;5(-1:;1;:{';;1"3’

The two measures we present incorporate the squares. The first measure is the var?-l

Range

The rangeis the difference between the largest and smallest observations. ance.
For nation A, Figure 3.13 indicates that the range of income values is about $50,000
_ 0 = $50,000; for nation B, the range is about $30,000—%$20,000 = $10,000. Nation Variance
A has greater variation of incomes than nation B.
to other characteristics of data variability. The The vardanch ot n oboamiaies
ns§,.... Y, is

The range is not, however, sensitive
three distributions shown in Figure 3.14 all have the same mean ($25,000) and range

($50,000), yet they differ in variation about the center of the distribution. In terms of
distances of measurements from the mean, nation A is the most disperse, and nation B
is the least. The incomes in nation A tend to be farthest from the mean, and the incomes

in nation B tend to be closest.

=32 ) L
32=2(YE—YJ =(_Yl.__y)'+(Y2_Y)-+"'+(Y,,—}7)2
L n—1
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The variance is approximately an average of the squared deviations. T_hat 1?, 11;11;::
proximates the average of the squared dis_talnccs from _thc mean. The undn; 0 ‘a?or{g
urement are the squares of those for the original data, since it uses squared devi C; ucﬁ
This makes the variance difficult to interpret. The square root of the variance,
the standard deviation, is better for this purpose.

Standard Deviation

The standard deviation s is the positive square root of the variance:

[s@-7)
Lo e

The expression (Y‘- - ?]2 in the formulas for the varia_nce and standard (Ilewz;:;o‘r;
is called a sum of squares. It represents squaring the deviations and then adding thos

It is incorrect to first add the deviations and then square that sum; this gives a

e rger the sum of squares and

value of 0. The larger the deviations about the mean, the la
the larger s and s tend to be.

Example 3.8 Comparing Variability of Quiz Scores
Each of the following sets of quiz scores for two small samples of students has a mean
of 5 and a range of 10:

Sample 1: 0,4,
Sample 2: 0,0,

1 show less variability about the mean than

inspecti scores in sample
D s ple 1 are close to the mean of 5, whereas all

those in sample 2. Most scores in sam
the scores in sample 2 are quite far from 5.
For sample 1,
7)’ 24 (4_ 524 (4= 5P+ (5— 5P+ (T—5P+(10—5)> =36
T(r;-7) =©0-5"+0¢ 524+ (4-5°+

so that the variance equals

56

e T 61

=112

56
5
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Since 5.1 > 3.3, the performances in sample 2 were more variable than those in sample
1, as expected. O

Similarly, if 54, 5, and s denote the standard deviations of the three distributions
in Figure 3.14, then 53 < s¢ < s54; that is, 5 is less than sc, which is less than s4.

Statistical software and many hand calculators can calculate the standard deviation
for you. You should do the calculation yourself for a few small data sets to help you
understand what this measure represents. The answer you get may differ slightly from
the value reported by computer software, depending on how much you round off the
mean before inserting it into the sum of squares part of the calculation.

Properties of the Standard Deviation

e 5=0.

e s = 0 only when all observations have the same value. For instance, if the ages
in a sample of five students are 19, 19, 19, 19, 19, then the sample mean equals
19, each of the five deviations equals 0, and 5> = 5 = 0. This is the minimum
possible variation for a sample.

e The greater the variation about the mean, the larger is the value of 5. Exam-
ple 3.8 illustrated this property. For another example, we refer back to the U.S.
and Canadian murder rates shown in Figure 3.5. The plot suggests that mur-
der rates are much more variable in the U.S. In fact, the standard deviations are
s = 4.0 for the United States and s = .8 for Canada.

e The reason for using (n — 1), rather than n, in the denominator of s and stisa
technical one (discussed later in the text) concerning the use of these statistics to
estimate population parameters. In the (rare) instances when we have data for the
entire population, we replace (n — 1) in these definitions by the actual population
size. In this case, the standard deviation can be no larger than half the size of the
range.

Problem 3.64 at the end of this chapter presents two properties of standard de-
viations that refer to the effect of rescaling the data. Basically, if the data are
rescaled, the standard deviation is also rescaled. For instance, if we double the
scores, thus doubling the variation, then s doubles. If we change data on annual
incomes from dollars (such as 34,000) to thousands of dollars (such as 34.0), the
standard deviation also changes by a factor of 1000 (such as from 11,800 to 11.8).

Interpreting the Magnitude of s

Thus far, we have not discussed the magnitude of the standard deviation s other than
in a comparative sense. A distribution with s = 5.1 has greater variation than one with
s = 3.3, but how do we interpret how large s = 5.1 is? A very rough answer to this
question is that s is a type of average distance of an observation from the mean. To

Likewise, you can verify that for sample 2, 5% = 26.4. The average f;que:ircd‘ d[iis;tﬁnf::’; ;
from the mean is about 11 in sample 1 and 26 in sample 2.‘ The standard evlz P ;
sample 1 equals s = J11.2 = 3.3, whereas for sample 2 it equals s = /264 = 2.1

illustrate, suppose the first exam in this course is graded on a scale of 0 to 100, and the
sample mean for the students is 77. A value of s = 0 in very unlikely, since every
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— 50 seems implausibly large for a typical

as 8 or 11 or 14 seem much more realistic. i 68% of
further knowledge of the mathematical i Seores:
ing rule provides an approximate inter- /

!= student must then score 77; a value of s

| distance from the mean; values of s such

[ More precise ways to interpret s require

| form of a frequency distribution. The follow
pretation for many data sets.

Empirical Rule

If the histogram of the data is approximately bell-shaped, then
1. About 68% of the data fall between ¥ — s and ¥ +s.
2. About 95% of the data fall between ¥ —2sand ¥ +2s.
3. All or nearly all the data fall between ¥ —3sand ¥ +3s.

R

LN R

95% of scores

The rule is called the Empirical Rule because many distributions encountered in
practice (that is, empirically) are approximately bell-shaped. Figure 3.15isa graphical Figure 306 AB :
. ell-Shaped Distribution of Test Scores with Mean 500 and Standard Deviation 100

portrayal of the rule.
About 68% of measurements

i 2 HORART : §
. 89 g;;ccbzttaﬁisog ;:11; dlls],mbutmn falling within two standard deviations of the mean

; . change to as low as 75% or as high istri
o = s high as 100% for oth stribu-
i;o;s h’:‘h; _Empmca! Rule may not work well if the distribution is highI§r skce\:r:(?n;??fu'l
- gdy iscrete, with the vfmabic taking relatively few values. The exact percent: :
pend on the form of the distribution, as Example 3.10 demonstrates e

Example 3.10 Familiarity with AIDS Victims

The 1993 General Social Surve i
| 93 y asked “How many people have /
;glrl;;::[vl:ng or dcad,_ \aleho came down with AIDS?” Table 3.9 shg\(:: 1:)2?1‘2? 52:?:1[13'[:;"
o I?Sressuan:enéar;?&g :I:E 1]598 responses on this variable. It indicates that ?625; 0:‘
: 5 a arti i
ik 7 e lower quartile (Q1), median, and upper quartile (Q3) all
The mean and standard deviation y
1 ar are Y = 047 and s = 1.09. Th es 0
;aﬁn:l:tl;.;ll within one slandar_d {kv_iation of the mean. Now, 88.8% of tﬁevgli::’r?b?ﬁgd
e i;scc: ]t\l:o lpomts,‘ or within ¥ &+ 5. This is considerabiy larger than the‘68% thaI:
i gth_ : ule pred1‘cts !'or t?ell—shaped distributions. The Empirical Rule does not
b 5' 2 kl;_ r::?uenc}f d1stnbut1o_n, since it is not even approximately bell-shaped. In-
'[‘ab]e; - 9‘ "[I‘ﬁc ;,r ;:;:S?dvl? [:(.: n;b;lhl,d{is y-:t))u can check by sketching a hislograrrlx for
[ 9. alue in the distribution (0) is less th standz i
tion below the mean; the largest i S o e e
oot gest value in the distribution (8) is nearly seven standard
m]

About 95% of measurements

All or nearly all measurements

Figure 3.15 Empirical Raule: Interpretation of the Standard Deviation for a Bell-Shaped Distribution

Example 3.9 Describing the Distribution of SAT Scores
The distribution of scores on the verbal or math portion of the Scholastic Aptitude Test
(SAT) is now scaled so it is approximately bell-shaped with mean of 500 and standard
deviation of 100, as portrayed in Figure 3.16. By the Empirical Rule, about 68% of the
scores fall between 400 and 600 on each test, since 400 and 600 are the numbers that
are one standard deviation below and above the mean of 500. Similarly, about 95% of
the scores fall between 300 and 700, the numbers that are two standard deviations from
the mean. The remaining 5% fall either below 300 or above 700. The distribution is
roughly symmetric about 500, so about 2.5% of the scores fall above 700 and about

a

2.5% fall below 300.

The percentages stated inth
tributions that are approximate

Whe i
b mea;m;?r l‘he sr_nallest or largest observation is less than a standard deviation from
il qc, ; 1? is evidence of severe skew. For instance, a recent exam one of us gave
o lhaﬁ g :c :to;r‘lldﬂa:g Lﬂﬂ_ha_d ¥ z 86 and s = 15. Since the upper bound of IOngas
S eviation above the mean, we surmi istributi
SotRe AT g sk e b0 the 1o ised that the distribution of

e Empirical Rule are approximate and refer only to dis-
ly bell-shaped. In the bell-shaped case, for instance,
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TABLE 3.9 Frequency Distribution of the Number of People Known Personally With AIDS
RIDS Frequency Percent

PR L R R
-
o
N w DS

is Variable : AIDS
n;alysst 1598 Quartiles Range 8

Mean 0.473 100% Max 03-01 0

Mode 0
Dev 1.089 75% Q3
i 50% Med

25% Q1
0% Min

The standard deviation, like the mean, can be greatly affcc_tedTbg] ar; -:;u;(l)l::i] E:;)IO
ticularly for small data sets. For instance, thle rr'mrdler rgte data 1?] tal rree \‘]1;;; s
states have ¥ = 7.33and s = 3.98. The d}stnbuhgn is SOmMew 3 ld dg‘,iati‘m e
can check that 68% of the states have murder rates within one standar 1 Z o
mean and 98% within two standard deviations. Now, suppose we -1[[::: u ; e
rate for the District of Columbia in the data set, which equals ?8.5(.)6 1{;:; r; . m o
s = 10.72. The standard deviation more than doubles, and now 96.1% of

rates (all except D.C. and Louisiana) fall within one standard deviation of the mean.

oooco®

Interquartile Range

The interquartile range, dcnoteq l?)'
variation. It is defined as the dlftgrcn
advantage of the IQR over the ordmar}-' range or the stan
sensitive to extreme outlying observatons.
To illustrate, we use the U.S. murde; Ora;te o
<oure 3.4. The rates range from 1.6 to 20.5, with a . 3
Elgu;nd an upper quartile of 10.3. For these data, IQR = 10.3 — 3.9 = f'df}o?nhs:
w"c,add the observation of 78.5 for D.C. to the data set, the IQR changes on )rd ‘atio'n
to 6.5. By contrast, the range changes from 18.7 to 76.9 and the standard devi

changes from 4.0 to 10.7.

IQR, is another range—type statistic for de_scribing
ce between the upper and lower quartiles. An
dard deviation is that it is not

data shown in the stem and leaf p}ot in
lower quartile of 3.9, a median of
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Like the range and standard deviation, the IQR increases as the variability increases,
and it is useful for comparing variation of different groups. To illustrate, we compare
variability in U.S. and Canadian murder rates using the data shown in the back-to-back
stem and leaf plots of Figure 3.5. The Canadian data has IQR = 2.6 — 1.2 = 1.4,
showing much less variability than the IQR value of 6.4 for the U.S. data.

For bell-shaped distributions, the distance from the mean to either quartile is roughly
2/3rd of a standard deviation, and IQR is very roughly about (4/3)s. The insensitiv-
ity of the IQR to outliers has recently increased its popularity, though in practice the
standard deviation is still much more common.

Box Plots

We conclude this section by presenting a graphical summary of both the central ten-
dency and variation of a data set. This graphic, called a box plot, portrays the range
and the quartiles of the data, and possibly some outliers.

The box contains the central 50% of the distribution, from the lower quartile to the
upper quartile. The median is marked by a line drawn within the box. The lines ex-
tending from the box are called whiskers. These extend to the maximum and minimum
values, unless there are outliers.

Figure 3.17 shows the box plot for the U.S. murder rates, in the format of box plots
provided with SAS software (with the PLOT option in PROC UNIVARIATE). The up-
per whisker and upper half of the central box are longer than the lower ones. This in-
dicates that the right tail of the distribution, which corresponds to the relatively large
values, is longer than the left tail. The plot reflects the skewness to the right of the dis-
tribution of U.S. murder rates.

Box plots are particularly useful for comparing two distributions side by side. Fig-
ure 3.17 also shows the box plot for the Canadian murder rate data. These side-by-side

20 o
Murder
Rate
15 4
10 4
54
T
0 - — Figure 3.17 Box Plots for U.5. and
u.s Canada

Canadian Murder Rates
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plots reveal that the murder rates in the U.S. tend to be much higher and have much

greater variability.
Box plots identify outliers separately. To explain this, we now present a formal def-
inition of an outlier.

-—

Outlier

An observation is an outlier if it falls more than 1.5 IQR above the upper quartile or
more than 1.5 IQR below the lower quartile.

-

In box plots, the whiskers extend to the smallest and largest observations only if
those values are not outliers; that is, if they are no more than 1.5 IQR beyond the quar-
tiles. Otherwise, the whiskers extend to the most extreme observations within 1.5 IQR,
and the outliers are specially marked. For instance, SAS marks by an O (O for outlier) a
value between 1.5 and 3.0 IQR from the box and by an asterisk (*) a value even farther
away. Figure 3.17 shows one outlier with a very high murder rate, which is the murder
rate of 20.3 for Louisiana. The distance of this observation from the upper quartile is
20.3 — 10.3 = 10.0, which is greater than 1.5 IQR = 1.5(6.4) = 9.6.

The outliers are shown separately because they do not provide much information
about the shape of the distribution, particularly for large data sets. SAS also plots the
mean on the box plot, representing it by a + sign; these equal 7.3 for the United States
and 1.9 for Canada. Comparing the mean to the median, which is the line within the
box, helps show any skewness.

3.5 Sample Statistics and Population Parameters

Of the measures introduced in this chapter, the mean Y and the standard deviation §
are the most commonly reported. We shall refer to them frequently in the rest of the
text. The formulas that define ¥ and s refer to sample measurements. Since their values
depend on the sample selected, they vary in value from sample to sample. In this sense,
they are variables, sometimes called random variables to emphasize that their values
vary according to the (random) sample selected. Their values are unknown before the
sample is chosen. Once the sample is selected and they are computed, they become
known sample statistics.

We shall regularly distinguish between sample statistics and the corresponding meas-
ures for the population. Section 1.2 introduced the term parameter for a summary mea-
sure of the population. A statistic describes a sample, while a parameter describes the
population from which the sample was taken. In this text, lowercase Greek letters usu-
ally denote population parameters and Roman letters denote the sample statistics.
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Notation for Parameters

Let fi3 (GI eek TIIU) and o (G eek sigma, denote the mean and standard deviation of
) levial a

We Fall pand o the population mean and pop lation standard deviation. The
populalllorll mean is the average of the population measurements. The population stand
ard_ deviation describes the variation of the population measurem b :
lation mean. B ok

Whereas the statistics ¥ and s are variables, with values depending on the sampl
chos_.en, the parameters p and o are constants. This is because y and o refer to just r?nz
%aﬁlsula.u gx:up‘ o?’ measurements, namely, the measurements for the entire population.

urse, t ‘e parameter values are usually unknown, which is the reason for sampling
and calculat_lng sample statistics as estimates of their values. Much of the rest 0? th'c:
text deals w_nl'! ways of making inferences about unknown parameters (such as ) usi 5
samp]_e statistics (such as ¥). Before studying these inferential methods lhn)‘: 'hlsm'g
must introduce some basic ideas of probability, which serves as the founﬁ ti bf : \;e
methods. Probability is the subject of Chapter 4. i

3

o

Chapter Summary

;hil :i}:jlpl;'r introduced ﬁescn’prive statistics—ways of describing a sample. Data sets
social science research are often large, and it is imy i i i

ice : 3 perative to summarize th .
tant characteristics of the information. e roE

Overview of Tabular and Graphical Methods

. A frequency distribu{:'on of the sample measurements summarizes the counts of
responses for aset of intervals of possible values. A relative frequency distribu-
tion reports this m_formation in the form of percentages or proportions.
ﬁ_\ histogram Iprovtdcs a picture of this distribution. It is a bar graph of the rela-
::]el ﬁ;q;;;cgs,h’[‘he;mmgmm shows whether the distribution is approximately
Bared 1. i ; SR S F
b shaped, skewed to the right (longer tail pointing to the right), or
The stem and leaf FM is an alternative way of portraying the data, grouping to-
gct_hcr all 01}5;rvatlons having the same leading digits (stem), and s;owino also
thmr fm_al digit (leaf): Turned on its side, it shows the shape of the dislﬁbElion
};%e a histogram, but it also presents the individual scores. ’
. - et bo; ;;for portrays the quartiles, the extreme values, and any outliers. This
ot and the st i ac i :
iy em and leaf plot are useful for back-to-back comparisons of two
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Stem and leaf plots and box plots, simple as they are, are relatively reclegnst 3:“?3;;_)
tions in statistics (Tukey, 1977). See Cleveland (1985, 1993) apd '{‘ufte ( ;
for even more recent and innovative ways to present data graphically.

Overview of Measures of Central Tendency

o Measures of central tendency describe the center of the collection of measure-

ments, in terms of the “typical” score. b
o The mean is the sum of the measurements divided by
center of gravity of the data. &
ian divides the ordered data set into f

: f(i?s{n;:l‘?';ci:ng below and half above that point. Itis
mean by outliers or extreme skew.

o The lower quarter of the nbser\ratigns fall bel
quarter fall above the upper qz_wmle. Thcse_ "
the median is the 50th percentile. The quartiles and medi
equal parts. ;

o The node is the most commonly occurring value.
though usually used with categorical data.

the sample size. It is the

two parts of equal numbers of sub-
less affected than the

low the lower quartile, and the upper
are the 25th and 75th percentiles, and
an split the data into four

It is valid for any type of data,

Overview of Measures of Variation

o Measures of variation describe the variability of the measurements. By
o The range is the difference between the largest and smallest nmas\.urcme.;:zzss_‘ s
interquartile range is the difference between the upper and lower quartiies;

less affected by extreme outliers.

TABLE 3.10 Measures of Central Tendency and Va@on

Measure ; Definition A Interpretation
" Central Mean Y =ZY/n Center of gravity
. o =
L, Median Middle measurement 50th percentile
of ordered sample e oo
Most frequently ost likely outcome,
e occurring value valid for all types of dau_il
iability  Variance § = B(Y; — ¥/(n—1)  Greater with more \T'mabﬂny,
e Gt average squared distance from mean

= " 7)/(n— 1) Empirical Rule: If bell-shaped,
g b ik 68%, 95% within 5, 25 of ¥

i Greater with more variability

Range Difference between largest
and smallest measurement

Interquartile  Difference between upper Encompasses middle half

range and lower quartiles of data L
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e The variance averages the squared deviations about the mean. Its square root,
the standard deviation, is easier to interpret. The Empirical Rule states that for
a sample with a bell-shaped distribution, about 68% of the measurements fall
within one standard deviation of the mean and about 95% of the measurements
fall within two standard deviations. Nearly all, if not all, the measurements fall
within three standard deviations of the mean.

Table 3.10 summarizes the measures of central tendency and variation. A statistic
summarizes a sample. A parameter summarizes a population. It is usually more rel-
evant than the particular value of the statistic, which depends on the sample chosen.
Statistical inference uses statistics to make predictions about parameters.

PROBLEMS
Practicing the Basics

1. According to the Bureau of the Census (Current Population Reports), in 1994 in the United
States there were 23.6 million households with one person, 31.2 million with two persons,
16.9 million with three persons, 15.1 million with four persons, 6.7 million with five per-
sons, 2.2 million with six persons, and 1.4 million with seven or more persons.

a) Construct a relative frequency distribution.

b) Construct a histogram. What is its shape?

¢) Using a score of 8 for the final category, find the mean number of persons per house-
hold.

d) Report and interpret the median and mode of household size.

2. According to News America Syndicate, in 1986 the number of followers of the world’s
major religions were 835 million for Christianity, 420 million for Islam, 322 million for
Hinduism, 300 million for Confucianism, 210 million for Buddhism, 79 million for Shinto,
50 million for Taoism, and 12 million for Judaism.

a) Construct a relative frequency distribution for these data.
b) Construct a bar graph for these data.
¢) Can you calculate a mean, median, or mode for these data? If so, do so and interpret.

3. Refer to Table 3.1. Use software to construct a histogram for these data, using its default
method of forming intervals. Describe the shape of the distribution, and construct the
corresponding relative frequency distribution.

4. Table 3.11 shows the number (in millions) of the foreign-born population of the United
States in 1990, by place of birth.

a) Construct a relative frequency distribution.

b) Plot the data in a bar graph.

¢) Is “Place of birth” quantitative or qualitative? How, if at all, can you describe these
data using numerical measures?

5. A researcher in an alcoholism treatment center, interested in summarizing the length of
stay in the center for first-time patients, randomly selects ten records of individuals insti-
tutionalized within the previous two years. The lengths of stay in the center, in days, are
as follows: 11, 6, 20,9, 13,4, 39, 13, 44, and 7.

a) Construct a stem and leaf plot.



