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istribution in the previous ex-

56. * Refer to the formula for the variance of a probability di
Problem 4.1. Can one use the

nd the standard deviation for the distribution in
this standard deviation? Explain.
1 with mean g and standard deviation & has mathe-

ercise. Fi
Empirical Rule to interpret
57. * The curve for a normal distributio

matical formula :
= (=)
fly ey
(The integral of this function with respect to y between j1+20 and oo equals the tail prob-
s symmetric; that is, for any constant

ability tabulated in Table A). Show that this curve i
¢. the curve has the same value for y = w+casfory =p—_C

58. * The standard error formulacy =0/ Jnactually treats the population size N as infinitely
Jarge relative 10 the sample size 1. The formula for oy for a finite population size N is

N-—n(of)
ge=+—\"F
£ N -1\

The term /(N — 1) JIN—1Dis called the finite population correction.
ge student body of size N = 30, 000,

a) Whenn = 300 students are selected from a colle
show that o = -995¢ [/ (In practice; 1 is usually small relative to N, so the correction

has little influence.)
b)Ifn = N (e, We sample the entire population),

no sampling error occurs, since ¥ = 1.

show that o = 0. In other words,
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Chapter 5

Statistical Inference: Estimation
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5.1 Point Estimation
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Sampling distribution of

Sampling distribution ¥ (unbiased)

of sample median
(biased)

=

Population distribution

Figure 5.1 Sampling Distributions of Two Point Estimators of the Population Mean, for a Skewed
Population Distribution

The concept of bias refers to the estimator’s behavior in repeated sampling, not in
one particular sample. Estimators are evaluated in terms of their theoretical perfor-
mance in a long run of repeated samples. In practice, however, we select a single sam-
ple of fixed size to estimate a particular parameter. Statistical methods use estimators
that are unbiased or for which the bias is negligible and disappears as the sample size
increases.

A second preferable property for an estimator is a small sampling error compared
with other estimators. An estimator whose standard error is smaller than those of other
potential estimators is said to be efficient. An efficient estimator is desirable because,

on the average, it falls closer than other estimators to the parameter.

For instance, suppose a population distribution is normal, and we want to estimate
its center, which is its mean, median, and mode. We could use the sample mean as
the estimate. Or, we could use the sample median. Section 5.5 shows, though, that
in sampling from a normal distribution, the sample median has a standard error that is
25% larger than the standard error of the sample mean. Thus, the sample mean tends
to be closer than the sample median to the population center. In this case, the sample

mean is an efficient estimator, but the sample median is inefficient.
In summary, a good estimator of a parameter is unbiased, or nearly so, and efficient.
The point estimates presented in this text possess these properties.

Point Estimators of the Mean and Standard Deviation

The sample mean Y = Y Y;/n is the obvious point estimator of a population mean f¢.

In fact, ¥ is unbiased, and it is relatively efficient for most population distributions. It
is the point estimator used in this text.

The symbol 7 over a parameter symbol represents an estimate of that parameter.
The symbol “ *” is called a caret, and is usually read as “hat.” For example, fi is read
as “mu-hat.” Thus, /i denotes the estimate ¥ of the population mean u, and & denotes
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The point estimates presented in this book are, under certain population assump-
tions, maximum likelihood estimates or essentially identical to such estimates for mod-
erate to large samples. For small samples, however, not all statisticians agree that max-
imum likelihood estimates are the best, particularly for problems with several parame-
ters. Some interesting research in the past quarter century has shown conditions under
which biased estimators may be better than the usual estimators such as sample means

and proportions, when there are several means or proportions to estimate. See, for in-
stance, Efron and Morris (1977).

5.2 Confidence Interval for a Mean

To be truly informative, an inference about a parameter should provide not only a point
estimate but should also indicate the probable accuracy of the estimate. Thatis, it should
describe how close that estimate is likely to fall to the true parameter value. If a study
with 100 college seniors reports that the estimated mean number of sex partners that
college seniors have had equals 5, we’d like to know whether that estimate of 5 is likely
to be within 1 of the actual population mean, within 2, within 4, or whatever.

The accuracy of a point estimator depends on characteristics of the sampling distri-
bution of that estimator. For example, the sampling distribution determines the proba-
bility that the estimator falls within a certain distance of the parameter. If the sampling
distribution is approximately normal, then with high probability (about .95), the estima-
tor falls within two standard errors of the parameter, and almost certainly it falls within
three standard errors. The estimated standard error helps us determine the likely accu-

racy of the estimator. The smaller the standard error, the more accurate the estimator
tends to be.

Confidence Intervals

The information about the likely accuracy of a point estimator determines the width of
an interval estimate of the parameter. This consists of a range of numbers that con-

tains the parameter with some fixed probability close to 1. Interval estimates are called
confidence intervals.

Confidence Interval

A c_onﬁdence interval for a parameter is a range of numbers within which the parame-
ter is believed to fall. The probability that the confidence interval contains the parameter

is called the confidence coefficient. This is a chosen number close to 1, such as .85
or .99,

) A confidence interval is based on a point estimator and the spread of the sampling
distribution of that estimator. When the sampling distribution is approximately normal,
we construct a confidence interval by adding to and subtracting from the point estimate
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Large-Sample Confidence Interval for a Mean
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Figure 5.2, line 2). Thus, the probability is .05 that Y is such that ¥ % 1960y does not
contain fi.

The interval ¥ + 1.9607 is an interval estimate for p with confidence coefficient
.95, called a 95% confidence interval. Unfortunately, the value of the standard error
oy = o/+/n in this formula is unknown, since the population standard deviation ¢ is an
unknown parameter. Forn > 30, a good approximation for o results from substituting
the sample standard deviation s for & in this formula. Then,

a s
05 = —

Jn
estimates the true standard error. One can insert this estimated standard error in the
formula for a confidence interval. The error in substituting the point estimate s for &
is small when n > 30. The resulting 95% confidence interval equals

7 +1.9667, whichis ¥ + 1,96%

Example 5.1 Estimating Mean Number of Sex Partners

Recent General Social Surveys have asked respondents how many female partners they
have had sex with since their 18th birthday. Over half the respondents answered 0,
presumably because the question was asked of both the male and female respondents.
In 1994, of those 1055 respondents who responded with a number higher than 0, the
distribution was highly skewed to the right with a sample mean of 10.2 and standard
deviation of 10.1. Let u denote the mean for the population represented by this sample.

When s = 10.1 and n = 1055, the estimated standard error of the sampling distribu-
tion of ¥ is

N/ 055

A 95% confidence interval for w is
Y + 1.9665 = 10.2 +1.96(.31) = 10.2 &£ .6, or (9.6, 10.8)

We can be 95% confident that this interval contains , the population mean number of
female sex partners. The point estimate of y is 10.2, and the interval estimate predicts
that  is no smaller than 9.6 and no greater than 10.8.

The survey also asked for the number of male sex partners since the 18th birthday.
Of the 1431 subjects responding with a positive number, the mean was 4.8 and the

standard deviation was 6.2. You can check that the 95% confidence interval for that

population mean equals (4.5, 5.1).

Keep in mind that the error allowed in these intervals refers only to sampling error.
Other errors relevant for these parameters include those due to nonresponse (e.g., for
the number of female partners, 270 subjects provided no response, 34 responded “don’t
know,” and 23 refused to answer) or measurement error (lying or giving an inaccurate
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Let’s study in greater detail this formula. One multiplies the estimated standard er-
ror &y by a z-value and then adds and subtract it from Y. The z-value is such that the
probability within z standard errors of the mean of the normal sampling distribution
equals the confidence coefficient. For example, let’s find z for a 98% confidence inter-
val. When the probability .98 falls within z standard errors of the mean, .02 falls in the
two tails and .01 in the right-hand tail. Looking up .01 in the body of Table A, we find
z =2.33. A 98% confidence interval equals ¥ = 2.336y, since the probability equals
98 that ¥ falls within 2.33 standard errors of p.

The probability that a confidence interval does not contain the parameter is called
the error probability. This equals 1 minus the confidence coefficient. For confidence
coefficient .95, the error probability equals .05. In general, the z-score for a confidence
interval is the one for which the error probability falls in the two tails of a normal curve.
Half the error probability falls in each tail. For instance, for a 95% confidence interval,
the error probability equals .05; the z-score is the one with probability .05/2 = .025 in
each tail, which is z = 1.96.

Let o denote the error probability. Then, 1 — « is the confidence coefficient. For
instance, for an error probability of & = .05, the confidence coefficient equals 1 — & =
.95. The z-value for the confidence interval is such that the probability is 1 — e that ¥
falls within z standard errors of j. Equivalently, the probability is o that ¥ falls more
than z standard errors from pt. The z-value refers to a total probability of & in the two

tails of a normal distribution, or /2 in each tail.

In reality, the probability that the confidence interval contains p is approximately
equal to the chosen confidence coefficient. The approximation improves for larger sam-
ples, as the sampling distribution of ¥ is more closely normal in form and the estimated
standard error 6y gets closer to the true standard error o7y.

Properties of the Confidence Interval for a Mean

We next study the properties of confidence intervals for means. These properties also
apply to confidence intervals for other parameters.

The confidence level associated with confidence intervals has a long-run relative
frequency interpretation. The unknown mean f is a fixed number. A confidence inter-
val constructed from any particular sample either does or does not contain p. However,
if we repeatedly selected random samples of that size and each time constructed a 95%
confidence interval, then in the long run about 95% of the intervals would contain p.
This happens because about 95% of the sample means would fall within 1.960y of 1,
as does the ¥ in line 1 of Figure 5.2. Saying that a particular interval contains y with
“95% confidence” signifies that in the long run 95% of such intervals would contain y;
that is, 95% of the time the inference is correct.

Figure 5.3 shows the results of selecting ten separate samples and calculating the
sample mean for each and a 95% confidence interval for the population mean. The
confidence intervals jump around because ¥ varies from sample to sample, but nine of
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Sampling distribution of ¥

e

PRI % Figure 5.3 Ten 95% Confidence
Intervals for ; In the Long Run, Only
E 5% of the Intervals Fail to Contain p

the ten intervals contain the population mean . On the average, only about 1 out of
20 times does a 95% confidence interval fail to enclose the population mean.

In practice, of course, we select just one sample of some fixed size n and construct
one confidence interval using the observations in that sample. We do not know whether
any particular 95% confidence interval truly contains p. Our 95% confidence in that
interval is based on long-term properties of the procedure. We can, though, control
by our choice of the confidence coefficient the chance that the interval contains p. If
an error probability of .05 makes us nervous, we can instead form a 99% confidence
interval.

Unfortunately, the greater the confidence level, the wider the confidence interval,
This happens because the z-value in the formula is larger—for instance, z = 1.96 for
95% confidence and z = 2.58 for 99% confidence. To'be more sure of enclosing p,
we must sacrifice precision of estimation by permitting a wider interval. In forming a
confidence interval, we must often compromise between the desired precision of esti-
mation and the desired confidence that the inference is correct; as one gets better, the
other gets worse. This is why you would not typically see a 99.9999% confidence in-
terval. Although it sounds very safe and nearly error free, it would usually be too wide
to tell us much about where the population mean falls (its z-value is 4.9).

Intuitively, one should be able to estimate p better with a larger sample size. The
plus and minus part of a confidence interval is zs/+/n, which is inversely proportional
to the square root of the sample size. The larger the value of n, the narrower is the
interval. Thus, one can improve the precision by increasing the sample size.

To illustrate, suppose that ¥ = 10.2 and s = 10.1 in Example 5.1 were based on
a sample of size n = 4220, four times the actual sample size of n = 1055. Then, the
estimated standard error Gy of the sampling distribution of Y is

E 10.1

T /4220

=155

oy =

B

.wdc a point or interval estimate of
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Large-Sample Estimation for a Proportion
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This estimated standard error appears in confidence intervals. From the same reasoning
shown in the previous section for the mean, a 95% confidence interval for m is

7 +1966; = # + 1.96@

Example 5.2 Estimating Proportion Favoring Legalized Abortion

The 1994 General Social Survey asked respondents, “Please tell me whether or not you
think it should be possible for a pregnant woman to obtain a legal abortion if the woman
wants it for any reason.” Of 1934 respondents, 895 said yes and 1039 said no. We shall
estimate the population proportion that would respond yes to this question.

Let 7 represent the population proportion that would respond yes. Of the n = 1934
respondents, 895 said yes, so # = 895/1934 = .46,and | — 7 = .54. That is, 46% of
those sampled said yes and 54% of those sampled said no.

The estimated standard error of the estimate 7 of 7 equals

8z = Jﬁ(l g s )1 ol B0 +/.00013 = .011
n 1934

A 95% confidence interval for 7 is

7 £ 1.966; = .46 £1.96(.011) = .46 4+ .02, or (.44, .48)

The population percentage that supports unrestricted access to abortion appears to be
at least 44% but no more than 48%.

All numbers in the confidence interval (.44, .48) fall below .50. Thus, apparently
fewer than half the population supports unrestricted access to abortion. Results in this
survey varied greatly depending on the question wording. For instance, when asked
whether abortion should be available if the woman becomes pregnant as a result of rape,
1616 said yes and 318 said no; you can check that the 95% confidence interval for the
population proportion saying yes equals (.82, .85).

When n = 1934 and 7# = .46, the estimated standard error of 7 is

& = VAl —7)/n= 011

Similarly, the estimated standard error for 1 — 7, the proportion of voters who say no
to legalized abortion, is

615 = V(1L = )7 /n = /(:54)(:46)/1934 = 011

.- A 95% confidence interval for the population proportion of negative responses is

54 £1.96(.011) = .54 £ .02, or (.52,.56)

Now .52 = 1 — .48 and .56 = 1 — .44, where (.44, .48) is the 95% confidence interval
for m. Thus, inferences for.the proportion 1 — 7 follow directly from those for the
proportion 7 by subtracting each endpoint of the confidence interval from 1.0. o
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Effect of Confidence Coefficient and Sample Size

The formula for the large-sample confidence interval for a proportion is & + z6;. The
z-value depends on the confidence coefficient in the same way as a confidence interval
for the mean u.

To illustrate, to be more cautious about possibly incorrectly predicting the popula-
tion proportion favoring unrestricted abortion, we might instead use a 99% confidence
interval. This equals

7T +2.580; = .46 +2.58(.011) = .46 £+ .03, or (.43, .49)

The confidence interval is slightly wider, (.43, .49) instead of (.44, .48), as the cost of
achieving greater confidence.

Like the width of the confidence interval for a mean, the width of a confidence inter-
val for a proportion depends on the sample size n as well as the confidence coefficient.
To illustrate, suppose that 46% of a random sample of size n = 30 supported unre-
stricted abortion. Then 6; = 4/(.46)(.54)/30 = .091, and a 99% confidence interval

for o is

7t £2.586; = .46 & 2.58(.091) = .46 & .23, or (.23, .69)

In other words, if the sample proportion referred to a sample of size 30 instead of 1934,
it would provide a very imprecise prediction of the population proportion. Since the
interval contains values both well below and well above .50, it is plausible that a strong
majority or that a weak minority of the population would support unrestricted abortion.
Our conclusion from such a small sample would be ambiguous, while the conclusion
from a sample as large as the General Social Survey provides is much more clear cut.

Summary of Formula and Sample Size Validity

The confidence interval for a proportion, like the one for a mean, applies for large sam-
ples. When the proportion is between about .30 and .70, the usual sample size criterion
for a mean works fine. That is, one can use the method if # is at least about 30. When
the proportion is less than .30 or higher than .70, the sampling distribution is skewed
and requires a larger sample size to achieve normality. In this case, there should be at
least ten observations both in the category of interest and not in it. When neither of
these are satisfied, estimating the proportion is complex, though Problem 5.57 shows a
method that usually works quite well. In Example 5.2, the sample proportion is .46 and
the sample size is 895 + 1039 = 1934. The sample size requirement is easily satisfied.

We complete this section by summarizing the large-sample confidence interval for =

a population proportion.

Let & denote the error probability that the interval does not contain the parameter. §
As in the confidence interval for a mean, the z-value refers to a total probability of & _:

in the two tails, with «/2 in each tail.

. Before computi
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requires an accurate estimate to predict the winner. If, on the other hand, the goal is t0

estimate the proportion of residents of Syracuse, New York, who have rural origins, a
larger margin of error might be acceptable. So, we must first decide whether the error

should be no more than 104 (four percentage points), .05, .10, or whatever.
precision is achieved.

Second, we must set the probability with which the specified
For instance, we might decide that the errorin estimating a population proportion should
not exceed .04, with 95 probability. This probability must be stated, since with any
sample size one can have an error of no more than .04 with some probability, though

perhaps a very small one.
The next example illustrates sample size determination for estimating a population

proportion.

Example 5.3 Sample Size for a Survey on Single-Parent Children

A group of social scientists wanted to estimate the proportion of school children in

Boston who were living with only one parent. Since their report was to be published,
they wanted a reasonably accurate estimate. However, since their funding was limited,
they did not want t0 collect a larger sample than necessary. They decided to use a sam-
ple size such that, with probability 95, the error would not exceed .04. In other words,

fall within .04 of the true value, with probability

they wanted the sample proportion to
95, Thus, they wanted to determine n such that a 95% confidence interval for 7 equals

7 £ .04
Since the sampling distribution of the sample proportion # is approximately nor-

mal, the sample proportion # falls within 1.960% of 7t with probability 95. Thus, if
the sample size is such that 1.9607 = .04, then with probability 95, # falls within .04
units of 7 and the error of estimation does not exceed .04. See Figure Sy

95

'

1.960%

Figure 5.5 Sampling Distribution of 7 with the Exror of Estimation No Greater than .04, with

Probability .95
for which

We must solve algebraica'lly for the value of n that provides 2 value of o

04 = 1.9607; that is, we must solve for n in the expression

04 = 1.96 ’_’_(.l_ff—}
04 = 196,/ =
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llp]ylﬂg both sid P Y ¥ .uUa, &
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Determining n So That ¥ Has Probability .95 of Falling Within B Units of In

The greater the spread of the population distribution, as measured by the standard
deviation o, the larger the sample size needed to achieve a certain accuracy. If sub-
jects show little variation (i.e., o is small), we need less data than if they are highly

heterogenous. In practice, o is unknown. One substitutes an educated guess for it, per-
haps based on results of a previous study.

Example 5.4 Estimating Mean Educational Level of Native Americans

A study is planned of elderly Native Americans. Variables to be studied include edu-
cational level. How large a sample size is needed to estimate the mean number of years
of attained education correct to within 1 year with probability .997
Suppose the study has no prior information about the standard deviation of educa-
tional attainment for Native Americans. As a crude approximation, they might guess
that nearly all values of this variable fall within a range of about 15 years, such as be-
tween 5 and 20 years. If this distribution is approximately normal, then since the range
from p — 30 to i + 30 contains nearly all of a normal distribution, the range of 15
would equal about 6. Then, 15/6 = 2.5 is a crude guess for . This seems plausible,
since it means that about 68% of the education values would fall within 2.5 years of the
mean, or within a span of 5 years.
Now, for 99% confidence, the z-score is the one with probability .01/2 = .005 in
each tail, or z = 2.58. Since the desired bound on error equals B = 1 year, the required

sample size is
2
2(2)? L '
= et f— B ikl =4
e (B) @3) ( 1 2 subjects

A more cautious approach would select for o a number quite sure to be an upper
bound for its value. For example, it is reasonable to predict that o is no greater than
3.5, since a range of six standard deviations then extends from 0 to 21. This yields
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n = (3.5)2(2.58/1)% = 81 families. Then, if o is actually less than 3.5, the estimate ¥
will fall within 1 of . with probability even greater than .99, 0O

These sample size formulas apply to simple and systematic random sampling. Clus-
ter samples and complex multistage samples must usually be larger to achieve the same
precision, whereas stratified samples can usually be smaller. In such cases, determina-
tion of sample size is complex, and you should seek guidance from a statistical consul-

tant.

Other Considerations in Determining Sample Size

From a practical point of view, determining sample size is not a simple matter of plug-
ging numbers into a formula. Several other considerations affect the number of ob-
servations needed in a study. We have just discussed two, precision and confidence.
Precision refers to the width of a confidence interval, while confidence refers to the
probability that the interval actually contains the estimated parameter.

A third characteristic affecting the sample size decision is the variability in the pop-
ulation for the variables measured. We have already seen this for estimating means,
where the required sample size increases as o increases. The more heterogeneous the
population, the larger the sample needs to be. In the extreme case in which all popula-
tion elements are alike (zero variability), a sample size of 1 can accurately represent the
population. On the other hand, if there are 15 ethnic groups, age variation from 18 to
85, and wide variation in income, we would need a large sample to reflect accurately the
variation in these variables. In most social surveys, large samples (1000 or more) are
necessary, while for more homogeneous populations (e.g., residents of nursing homes)
smaller samples are often adequate, due to reduced population variability.

A fourth consideration is the complexity of analysis planned. The more complex the
analysis, such as the more variables one analyzes simultaneously, the larger the sample
needed to make an adequate analysis. If one is to analyze a single variable using a sim-
ple measure such as a mean, a relatively small sample might be adequate. On the other
hand, planned comparisons of several groups using complex multivariate methods re-
quire a larger sample. For instance, Example 5.4 showed that one can estimate mean
educational attainment quite well using a sample of only 42 people. On the other hand,
if one also wanted to compare the mean for several ethnic and racial groups and study
how the mean depends on other variables such as gender, parents’ income and educa-
tion, IQ, and size of the community, a much larger sample would be needed, probably
a thousand or more. One reason for the increase in the typical sample size of studies

in recent years is the greater complexity of statistical analyses used in social science

research.

Finally, a fifth consideration concerns time, money, and other resources. Larger ¢
samples are more expensive and more time consuming, and may require more resources §
than the study has available. Time, cost, and resource limitations are often the major 2

constraints on sample size. For example, sample size formulas might suggest that 1

cases provide the desired accuracy. Perhaps, however, we can afford to gather only 500. 3
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A significance test is q Way of statistically testing a hypothesis by comparing the
data to values predicted by the hypothesis. Data thar fall far from the predicted val-
ues provide evidence against the hypothesis. The following example illustrates ideas

C h apte r 6 behind significance tests.

Example 6.1 Testing for Gender Bias in Selecting Managers

A large supermarket chain in Florida occasionally selects some of its employees to re-

ceive management training, A group of women employees recently claimed that males

are picked at a disproportionally high rate for such training. The company denied this

claim (Tampa Tribune, April 6, 1996).

Let’s consider how the women employees could Statistically back up their assertion.

5 . I l f e r e n C e : Suppose the employee pool for potential selection for management training is half maje

Stat l St | Ca n and half female, Then, the company’s claim of 3 Jack of gender bias is a hypothesis. It

States that, other things being equal, at each choice the probability of selectj ng a female

S i n iﬁ Ca n Ce TeStS equals 1/2 and the probability of selecting a male equals 1/2, If the employees truly are

g selected for management training randomly in terms of gender, about half the employ-

ees picked should be females and about half should be male. The women’s claim is an
alternative hypothesis that the probability of selecting a male exceeds 1/2,

Since this program began, Suppose that nine of the tep employees chosen for man-

be unlikely, if there Were no gender bias, Would it be highly unlikely that at Jeast nine
of the ten employees chosen would have the same gender, if they were truly selected
atrandom from the employee pool? Due to sampling variation, jt need not happen that

: in predic-
im in many studies is to check whether the data agrc(;: i‘:ltt::ec:tﬁ?i y. p

A common aim ictions are hypotheses about variables measure
tions. These predictions are hy cisions about hypotheses. The process is statistical in the sense tha it uses sample data
to make inferences, p doing so, it can contro] the probability of an incorrect decision.
The first section of the chapter describes the elements of 4 significance test. The
remainder of the chapter deals with significance tests aboyt a population mean g or g
Population proportion 7. Sections 6.2 and 6.3 discuss the large-sample case, and Sec-
tions 6.5 and 6.6 present small-sample significance tests. Sections 6.4 and 6.7 show

how to control the probability of an incorrect decision,
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Assumptions

i i S e valid. These as-
All significance tests require certain assumptions for the tests tob

sumptions refer to

The type of data: Like other statistical methods, each test applies for either quan-
L] .

titative data or qualitative data. TR i3]
i - b tion: For some tests, the v
the population distribution: i M
i Ti;earfgg.lljl;rffo:rg cf; distribution, such as the normal. This 1s primarily true
a
-sample tests. e R
fftﬁzl:nse?hogi of sampling: The tests presented in this book require SLpie I
[ ]
sampling.
o Thesamplesize: Thev

alidity of many tests improves as the sample size Increases.
in mini i e an
These tests require a certain minimum sample size for th

alyses to work well.

Hypotheses

A significance test considers two hypothese

s about the value of a parameter.

Null Hypothesis, Alternative Hypothesis

i is i lly a state-
The null hypothesis is the hypothesis that is c_!lrectly ‘tested.a'i;l':rs] s:: u:;tae;ect il
ment that the parameter has value oorr'esE:hontdncnogmtrc;d:zts sotr:e i h;fpothesis. Re
thesis is a hypothesis tha ) e
:;r‘;(:?ha;g:s?a{;g: that the parameter falls in some alternative set of values 10

null hypothesis specifies.

Notation for Hypotheses

i ts the alter-
The symbol Ho represents the null hypothesis, and the symbol H, represen
native hypothesis.

i i ¢ null hy-
A significance test analyzes the strength of sample ev:;ienc:‘):tgrz;l:llf;t;e a1
hesis. The test is conducted to investigate whether 11_1c_ ata i
e hence suggesting that the alternative hypothesis 15 true. e app e
?Othcs‘lszi' 75 ncgof roof by contradiction. The alternative hypothesm is {1 ergwords,
gt ‘l;e;l ¢ am| lz data are inconsistent with the null k!ypothesas. In ot o
o :\rz E (l:thesis is supported if the null hypothesis appears 10 be r:,nfor o
the ?tl:er::slcarchjg usually conducts the test 10 gauge tl‘_ne amount ﬁf ;1:};:5(:? it
ternative hypothesis. Thus, the alternative hypothesis 15 often Calczin st
is. The hypotheses are formulated before collecting Of analy gml i
o te, we refer to Example 6.1 about possible gender {.’EIS'C['I gt
selerg?j;lrlzl:)sft?ml;lo)rces of a supermarket chain for management training.
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claims that the probability that any given employee selected is male equals 1/2. This
is an example of a null hypothesis, no effect referring to a lack of gender bias. The
alternative hypothesis reflects the skeptical women employees’ belief that this proba-
bility actually exceeds 1/2. We conduct the test by checking whether the sample data
are inconsistent with the null hypothesis probability value of 1/2.

Test Statistic

The fest statistic is a statistic calculated from the sample data to test the null hypothesis.
This statistic typically involves a point estimate of the parameter to which the hypothe-
ses refer.

For instance, to test a hypothesis about an unknown probability, one could use as
test statistic the sample estimator of that probability. If nine out of ten selected trainees
are male, the estimator is the sample proportion, 9/10 = .90.

P-Value

Using the sampling distribution of the test statistic, we calculate the probability that
values of the statistic like the one observed would occur if the null hypothesis were true.
This provides a measure of how unusual the observed test statistic value is compared
to what Hy predicts.

Specifically, we consider the set of possible test statistic values that provide at least
as much evidence against the null hypothesis as the observed test statistic. This set is
formed with reference to the alternative hypothesis; the values providing stronger ev-
idence against the null hypothesis are those providing stronger evidence in favor of
the alternative hypothesis. The P-value is the probability, if Hy were true, that the test
statistic would fall in this collection of values.

P-Value

The P-value is the probability, when Hy is true, of a test statistic value at least as contra-
dictory to H, as the value actually observed. The smaller the P-value, the more strongly
the data contradict H,. The P-value is denoted by P.

The P-value summarizes the evidence in the data about the null hypothesis. A mod-
erate to large P-value means that the data are consistent with Hy. For instance, a P-
value such as .26 or .83 indicates that the observed data would not be unusual if Hp
were true. On the other hand, a P-value such as .001 means that such data would be
very unlikely, if Hy were true. This provides strong evidence against Hp.

For the gender bias example, the alternative hypothesis states that the probability

- of selecting a male for the managerial track exceeds 1/2. The test statistic is the sample

proportion of males in the ten trainees selected; the observed value equals 9/10 = .90.
The values of this test statistic providing this much or even stronger evidence against
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i i ortion val-
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Sec. 6.2 Significance Test for a Mean 159

TABLE 6.1 The Five Elements of a Statistical Significance Test

1. Assumptions

Type of data, form of population, method of sampling, sample size
2.  Hypotheses

Null hypothesis, Hp (parameter value for “no effect”)

Alternative hypothesis, H, (alternative parameter values)
3. Test statistic

Compares point estimate to null hypothesized parameter value
4.  P-value

Weight of evidence about Hp; smaller P is more contradictory
5. Conclusion

Report P-value

Formal decision (optional; see Section 6.4)

nificant at the .05 level. This means that if the null hypothesis were true, the chance of
getting such extreme results as in the sample data would be no greater than 5%.

The process of making a formal decision by rejecting or not rejecting a null hypoth-
esis is an optional part of the significance test. We defer further discussion of it until
Section 6.4. Table 6.1 summarizes the elements of a significance test.

6.2 Significance Test for a Mean

We now present a significance test about the population mean j for quantitative vari-
ables. This test assumes that the sample size n is at least 30. It uses the fact that, for
large random samples, the sampling distribution of the sample mean Y is approximately

normal, no matter what distribution the variable has. The five elements of the signifi-
cance test follow:

Elements of a Large-Sample Test for a Mean
1. Assumptions

The test requires a random sample of size n = 30. The variable measured is quantita-
tive, and the test refers to the population mean of the variable, .

2. Hypotheses

The null hypothesis has form
Hp: p = to

where 419 is some particular number. In other words, the hypothesized value of p in

Hy is a single value. This usually refers to no effect or no change compared to some
standard.




ce Tests

160 Chap. 6 Statistical Inference: Significan

i the one in the
The alternative hypothesis refers to alternative pa_ramclcr vsll:;assiimm
null hypothesis. The most common form of alternative hypothes

Hﬂ N 7& o
ince it i th be-
This alternative hypothesis is called two-sided, since 1t includes values falling bo
X -
isted in Hp. -
low and above the value puo liste 0 e e i
TR = d H, : p # 0illustrate ‘rma :
b h}’lﬁg-?:;:f l‘flzzp;o,;ulati?::rrlnearf equals 0, and the alternative hypothesis states

othesis sta
l:hat the population mean equals some value other than 0.

3, Test Statistic . S
¥ esti i an, Whenn = 30, the sampling
. e mean Y estimates the population mea pike =
E:fi;ﬁrg?lff is approximatcly normal about s W}th _star[dan_i (i;r:; ::ﬂ berc.r F{O oo
@ = o 18 true then the center of the sampling d1str1but1;)ré1 1: it 11{ i
F ’ i F i distance O S 2 .

in Fi 2. The evidence about Hj is the i v
i }?l%;;gmzsis value i, relative to the standard error. A value of Y falling

nu 4

idity se it would
the tail of this sampling distribution casts doubt on the validity of Hy, because 1
be unlikely to observe ¥ very far from (o if truly gt = Ho-

¥

Y dom samples, it is
Figure 6.2 Sampling Distribution of ¥ if Ho:pe=pols True. For large ran

approximam\y normal, centered at the null hypothesis value, Lo

The test statistic is the z-score

iy
]

—Ho _ — Ko
&y s//n

As n( hapter 5 we SL ibstitute the sa e stal d d deviation § foro tan eslunated
P! P to ge al

le standar 5
1 t s 1]

o7 = _The test statistic count > tanda
s T el thesized value fio- When Hp is true, the sampling dl_s-

< that ¥ falls from the hypo ‘ S
fgt?;:i{tmaof this test statistic i approxlmately I.hg sfandard ?c:;rnlaladslstrl
normal with mean equal to 0 and standard deviation equa ;

tion 4.2. The farther ¥ falls from g, the larger the al

Hence, the larger the value of |zl, the stronger the evidence against Ho-

=

presented in Sec-
bsolute value of the z test statistic:

o

Sec. 6.2 Significance Test for a Mean 161

One reason for placing a single number po in the null hypothesis Hy should now be
apparent. The calculation of the test statistic, and hence the result of the test, refers to
that one value.

4, P-Value

The test statistic summarizes the sample evidence. Different tests use different test
statistics, though, and it is easier to interpret the test statistic by transforming it to the
probability scale of 0 to 1. The P-value does this. It describes whether the observed
test statistic value is consistent with the null hypothesis, small values of P indicating
inconsistency.

We calculate the P-value under the assumption that Hj is true. That is, we give
the benefit of the doubt to the null hypothesis, analyzing how likely the observed data
would be if that hypothesis were true. For the alternative hypothesis Ha: p # o, the
P-value is the probability that the z test statistic is at least as large in absolute value
as the observed test statistic. This means that P is the probability of a Y value at least
as far from fig in either direction as the observed value of Y. The P-value refers to
the probability of the observed result or any other result that provides even stronger
evidence against the null hypothesis.

A z test statistic value of 0 results when Y = po. This is the z-value most consistent
with Hy. The P-value is the probability of a z test statistic value at least as far from this
consistent value as the one observed. In other words, P is the probability of those b4
values that are at least as contradictory to Hy : & = jto and at least as favorable to H,:
1 # Jo as the observed ¥, that is, at least as many standard errors distant from pg.

Figure 6.3 shows the sampling distribution of the z test statistic when Hy is true. To
illustrate the calculation of P, suppose z = —L.5. This is the z-score resulting from a
sample mean Y thatis 1.5 standard errors below jzo. The P-value is the probability that
z>150rz < —1.5 (e, |z| = 1.5). From Table A, the probability in one tail above
z = +1.5 is .0668, so the probability in both tails, beyond |z| = 1.5, equals 2(.0668) =
.1336. This is the probability that the sample mean falls at least 1.5 standard errors from
the true mean.

~

= Ho

P = Sum of tail probabilities =
of

= 2(.0668) =.1336

Sampling distribution of z =
when Hj is true
(standard normal distribution)

"' Figure 6.3 Calculation of P When z = —1.5, for Testing Hy: it = o Against Hy: pt # po. The
¢ P-Value is the two-tail probability of a more extreme result than the observed one.
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One should round the calculated P-value such as 1336
ing it. Reporting the P-value as .1336 makes it seem as 1

actually does, since the sampling distribution is only approximately normal.

5, Conclusion

Finally, the study should report the P-value,

dence. The smaller P is, the stronger the evidence against Ho and in favor of Ha.

Example 6.2 Political Conservatism and Liberalism

Many political commentators have remarked that sinc
there has been an upsurge of po
ideology in the United States is to analyze results of various i

Survey. For instance, every
scale on which the political views that p
liberal, point 1, to extremely conservative, point 7. Wher
this scale?” Table 6.2 shows the seven-point scale an
among the levels for a recent survey.

TABLE 6.2 Responses of 627 Subjects to a
s_e\.ren—Point Scale of Political Ideology
Count

_Response
1. Extremely liberal 12
2. Liberal 66
3. Slightly liberal 109
4. Moderate, middle of road 239
5. Slightly conservative 116
6. Conservative 14
7. Extremely conservative 1Y s

Political ideology is an ordinal scale. In some cases,
may refer to category proport!
extremely liberal different from the population proportion who
vative? More commonly, such scales are treated in a g
scores to the categories. One can then summarize responses by quant
such as means, allowing us to detect the exten
toward the conservative or the liberal end of the scale.

If we assign the category SCOTeS shown in Table 6

a propensity (oW
servatism. We can test whether these data show
conducting a significance test about how the population mean compares to the m!

value of 4.

to .134 or .13 before report-
£ more accuracy exists than

so others can view the strength of evi-

¢ the Reagan presidential years,
litical conservatism. One way to summarize political
tems on the General Social
year that survey asks, “I'm going to show you a seven-point
eople might hold are arranged from extremely
e would you place yourself on
d the distribution of 627 responses

the main interestin suchasc

ions; for instance, is the population proportion who are
are extremely conser-

uantitative manner by assigning
itative measures

t to which observations tend to gravitate

2, then a mean below 4 shows

ard liberalism, and a mean above 4 shows 2 propensity toward con-
much evidence of either of these by
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by = e L

TV

The value of the test statistic is, therefore

Bt 037 — 40
Gy 050

LT 64

The sample mean falls .64 esti
G oy .64 estimated standard errors above the null hypothesis
4. P- : i i
SOl:r]c:éu;lI:q fPI;‘value is the tw_o-tall probability that z would exceed .64 in ab-
e CaL i (UT zfglr: ;?emflgurc 6.4 portrays the P-value. From tﬁc normal
; , this two-tail probability =
prot . y equals P = 2(.2611) =
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032, is, ili Y i . g
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e ative or liberal direction. Generally, researchers dg not regard fh e
against Hp as strong unless P is very small, say, P < .05 orgP < 0(; -
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Sampling distribution of £,
when Hy is true
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Example 6.3 Confidence Interval for Mean Political Ideology

igni in Example 6.
to the significance test1n ; & :
il political ideology. Since ¥ = 4.03

An alternative inferential ap

confidence interval for the population mean

ameter, then s0 does

e 6.2 consu'ui‘r:su: “ing from anorexia. (The data, courtesy of Prof. Brian Everitt, Institute of Psychiatry,
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a3 = .050, a 95% confidence interval for y is
Y+ 1.9667 = 4.032 & 1.96(.050) = 4.03 £ .10, or (3.93,4.13)

At the 95% confidence level, these are the plausible values for p.

This confidence interval indicates that 4.0 is a plausible value for yu, since it falls
inside the confidence interval. Thus, it is not surprising that the P-value (P = .52) in
testing Hy: p = 4.0 against H,: pu # 4.0 in Example 6.2 was not small. In fact, when-
ever P > .05in a test of Hyp: p = pp against Hy: w # g, a 95% confidence interval
for u necessarily contains the null hypothesis value g of w. Similarly, suppose that
a confidence interval suggests that a particular number is implausible for u, that num-
ber falling outside the confidence interval. Then, a small P-value results from testing
the null hypothesis that y equals that number. In this sense, results of confidence in-
tervals and of two-sided significance tests are consistent. Section 6.4 discusses further
the connection between the two methods. O

One-Sided Significance Tests

Two other forms of alternative hypotheses are sometimes used. They have the direc-
tional form

Hy: po> o and H,: u< o

The alternative hypothesis H,: it > 1o applies when the purpose of the test is to de-
tect whether  is larger than the particular number 1, whereas H,: v < g refers to
detecting whether y is smaller than that value.

The alternative hypotheses H,: p > pp and Hy: o < pg are called one-sided.
They apply when the researcher predicts a deviation from Hy in a particular direction.
By contrast, the two-sided alternative Hy: i # jio applies when the researcher wishes
to detect any type of deviation of i from pg. This choice is made before analyzing the
data.

For the one-sided alternative H, : @ > gy, P is the probability of a z-score
above the observed z-score (i.e., to the right of it on the real number line) when Hy
is true. Equivalently, P is the probability of a sample mean above the observed value
of Y. These ¥ values are the ones that provide at least as much evidence in favor of
H, : @ > pyg as the observed value. So, P equals the tail probability to the right of
the observed z-score under the standard normal curve, as Figure 6.5 portrays. A z-score
of .64 results in P = .26 for this alternative.

For H,: 1 < pg, P is the tail probability to the left of the observed z-score under
the standard normal curve. A z-score of —.64 results in P = .26 for this alternative,
and a z-score of .64 results in P = 1 — .26 = .74,

Example 6.4 Mean Weight Change in Anorexic Girls
This example refers to a study that compared various treatments for young girls suffer-

London, are shown in Table 12.19 in Chapter 12, where they are analyzed more fully.)
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Implicit One-Sided Null Hypotheses

Example 6.4 showed that if 4 = 0, then the probability equals .013 of observing a
sample mean weight gain of 3.01 or greater for a sample of size 29. Now, suppose
g < 0; that is, the true mean weight change is negative. Then the probability of
qbscrving Y = 3.01 would be even smaller than .013. For example, a sample value of
Y = 3.01 is even less likely when g = —5 than when p = 0, since the sample value of
3.01 is farther out in the tail of the sampling distribution of ¥ when 1 = —5 than when
w = 0. Thus, rejection of Hy: ;¢ = 0 in favor of H,: p > 0 also inherently rejects
the broader null hypothesis of Hy: @ < 0. In other words, one concludes that 1 = 0 is
false and that ju < 0 is false.

The Choice of One-Sided Versus Two-Sided Tests

In practice, two-sided tests are much more common than one-sided tests. Even if a
researcher predicts the direction of an effect, two-sided tests permit the detection of
an effect that falls in the opposite direction. This practice coincides with the ordinary
approach in estimation. Confidence intervals are two-sided, obtained by adding and
subtracting some quantity from the point estimate. One can form one-sided confidence
intervals, for instance concluding that a population mean is at least equal to 7 (i.e., be-
tween 7 and oco). In practice, though, two-sided intervals are much more common.

In deciding whether to use a one-sided or a two-sided alternative hypothesis in a par-
ticular exercise, consider the purpose of the test. A statement such as “Test whether the
mean has changed” suggests a two-sided alternative, to allow for increase or decrease.
“Test whether the mean has increased” suggests the one-sided alternative,
H,: p > [Lp.

In either the one-sided or two-sided case, both hypotheses refer to the population
mean (i, not the sample mean ¥. Hypotheses always refer to population parameters,
not sample statistics. There is no uncertainty or need to conduct statistical inference
about sample statistics, since we can calculate their values exactly once we have the
data.

Table 6.3 summarizes the elements of large-sample significance tests for population
means.

3 Significance Test for a Proportion

For a qualitative variable, each measurement falls in one of a set of categories. Statis-
tical inference refers to the proportions in the categories. For instance, one might test
a hypothesis about the population proportion 7 planning to vote for the Democratic
candidate for President. This section presents a large-sample significance test for pop-

{ulation proportions. The test is similar to the test for a mean. It utilizes the approximate

normal sampling distribution of the sample proportion 7.
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Elements of the Test
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3. Test Statistic

From Section 5.3, the sampling distribution of the sample proportion # has mean 7
and standard error 03 = /m(1 — m)/n. When Hj is true, ¥ = g, so the sampling

distribution has mean 7y and standard error o3 = /7o(1 — mg) /1.
The test statistic is

7 —mo ﬁ'—ﬂo
L= =

O3 V(1 — 1) /n

This measures the distance of the sample proportion from the null hypothesis value, in
standard error units.

The z test statistic has the same form as in large-sample tests for a mean, namely,

Form of z Test Statistic

_ Estimate of parameter — null hypothesis value of parameter
s Standard error of estimator

Here, the estimate # of the proportion replaces the estimate ¥ of the mean, the hypothe-
sized proportion 7 replaces the hypothesized mean pg, and the standard error o; of the
sample proportion replaces the standard error oy of the sample mean. For large sam-
ples, the sampling distribution of the z test statistic is the standard normal distribution,
when Hj is true.

4. P-Value

The calculation of the P-value is the same as in tests for a mean. For the alternative
Hy: m # m, P is the two-tail standard normal probability that z has absolute value
larger than the absolute value of the observed z-value. See Figure 6.6. This probability
is double the single-tail probability beyond the observed z-value. For a one-sided alter-
native, the P-value is a one-tail probability. For instance, H,: 7 > mg predicts that the
true proportion is larger than the null hypothesis value; its P-value is the probability to
the right of the observed value of z under the standard normal curve. For H, : 7 < mp,
the P-value is the probability to the left of the observed z-value.

5. Conclusion

One summarizes the test by reporting the P-value. As usual, the smaller the P-value,
the more strongly the data contradict Hy and support H,.

As you read the examples in this section, notice the parallel between each element

f the test and the corresponding element for a test about a mean.
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Theoretically, it is not incorrect to substitute the sample proportion in the standard
error for the test. One simply obtains a slightly different answer for the test statistic and
P-value, but both approaches work well for large n. If one does the test that way, an
advantage is that the result necessarily agrees with conclusions from confidence inter-

vals. A disadvantage is that the normal approximation for the sampling distribution is
somewhat poorer, especially for proportions close to 0 or 1.

Never “Accept H,”

A small P-value provides evidence against Hy, since the observed sample result would
be unlikely if Hy were true. On the other hand, if the P-value is not small, the null
hypothesis is plausible. In this case, the conclusion is sometimes reported as “Do not
reject Hp,” since the data do not contradict Hy.

When the P-value is not small, failure to reject Hy does not
Hp.” The population proportion has other plausible values besi
null hypothesis. In addition, the failure to obtain a small P-va
sample size being too small to estimate the true proportion prec

For instance, Example 6.5 showed that # — 482 forn = 12
of .20 in testing Hy: 7 = .5 against H,:
but other values are also plausible. For in

mean one can “accept
des the number in the
lue may be due to the
isely.

27 provides a P-value
m # .50. Thus, it is plausible that = = .50,
stance, a 95% confidence interval for 7 is

(1 -7 482)(518
#4196 20" _ 4or s 1.961)'£-%_}5—) = 482+ .028, or (45, .51)
n

This interval shows a range of plausible values for 77, Even though insufficient evi-
dence exists to conclude that 7 # .5, it is improper to conclude that necessarily w = 5.
The data do not contradict Hy, but we need a larger sample size to determine whether
a majority or minority of the population believe that government has the responsibil-
ity to reduce income differences between the rich and poor. For instance, if 7 = 482
had been based on n = 5000 instead of n = 1227, you can verify that the test statis-
tic z = —2.55 and the P-value = .01. That P-value provides strong evidence against
Hy : 7w = .50 and suggests that fewer than half believe it is government’s responsibility
to reduce income differences. In that case, though, the 95% confidence interval for 7
equals (468, .496), indicating that 7 is quite close to .50 in practical terms.

Of course, we could have used the confidence interval approach from the start, rather
than a significance test, to gather information about the value of . The confidence in-
terval is more informative, since it displays the entire set of plausible values for 7 rather
.50 is plausible.

_Sample Size Requirement for Test

We next present a guideline about how large the sample size should be to use the large-
proportion. When 1 is between .3 and .7, the familiar rule for means

equate sample size. A more general rule that applies for all

1 approximation for the sampling distribution of 7, under Hy.
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more than adequate to test Hy: 7 = .5. One can use a small-sample test introduced in
Section 6.6 when the sample size requirement is not satisfied.

Interpreting the P-Value

In summary, tests describe whether the data are consistent with Hy by reporting the P-
value. This is the one- or two-tail probability beyond the observed result, calculated
under the assumption that Hy is true. When the P-value is small, the data contradict
Hpy; the observed data would be unusual if Hy were true.

A common error is to misinterpret the P-value as the probability that Hy is true,
Classical statistical methods apply probability statements to variables and to statistics,
not to parameters. In reality, the null hypothesis Hy is not a matter of probability; it is
either true or not true, and we simply do not know which is the case. In Example 6.5,
either 7 equals .50, or v does not equal .50. A proper interpretation for P = .20 is
as follows: If Hy were true, the probability would be .20 that the sample proportion 7
would fall at least as many standard errors from the null hypothesis value of .50 as the
observed 7 does. That is, P is the probability that 7 is at least as contradictory to Hy
as the observed value, under the assumption that Hy is true.

6.4 Decisions and Types of Errors in Tests of Hypotheses

In significance tests, the P-value summarizes the evidence about Hy. The smaller the
P-value, the more strongly the data contradict Hp.

a-Level

It is sometimes necessary to decide whether the evidence against Hy is strong enough
to reject it. The usual approach bases the decision on whether the P-value falls below
a prespecified cutoff point.To illustrate, one might reject Hy if P < .05, but conclude
that the evidence is not strong enough to reject Hy if P > .05. The boundary value .05
is called the a-level of the test.

-Level

The a-level is a number such that one rejects H, if the P-value is less than or equal
to it. The a-level is also called the significance level of the test. The most common
a-levels are .05 and .01.

Like the choice of a confidence coefficient for a confidence interval, the choice of
the ar-level for a test reflects how cautious the researcher wants to be. The smaller the
a-level, the stronger the evidence must be to reject Hy. To avoid bias in the decision-
making process, one selects the a-level before analyzing the data.
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on n = 6270 yields P = .044. This is statistically significant at the .05 level, but not

practically significant. For practical purposes, a mean political ideology of 4.03 does
not differ from 4.00.

One point of this examp

le is that larger sample sizes can provide more powerful in-
ferences; thus,

test statistics can detect deviations of smaller magnitude from Hy than
they can for smaller samples. The size of P merely measures the extent of evidence
about the truth of Hy, not how far from the truth Hy happens to be. One should always
inspect the difference between the sample estimate and the hypothesized value of the

parameter (e.g., between ¥ and s, between # and q) to gauge the practical implica-
tions of a test result.

Limitations of Si'gnificanoe Tests Compared to Estimation

Null hypotheses such as Hy : p = Mo and Hy : m = my are rarely true in the social
sciences. That is, rarely is the true value of the parameter exactly equal to the value
listed in Hy. With sufficiently large samples, so that a Type 1l error is unlikely, these
hypotheses will normally be rejected. What is more relevant is whether the true param-
eter value is sufficiently different from the null hypothesis value to be of importance.
Although tests of hypotheses can be useful, many social scientists and nearly all
statisticians believe that significance testing is greatly overemphasized in social sci-
ence research. By contrast, confidence intervals are underutilized. It is preferable to
construct confidence intervals for parameters instead of performing only significance
tests. A test merely indicates whether a particular parameter value is plausible; a confi-
dence interval displays additional information, showing the entire set of plausible val-
ues. When a P-value is small, the test indicates that the parameter value in the null
hypothesis is not plausible, but it tells us nothing about which potential parameter val-
ues are plausible. The confidence interval, on the other hand, displays those plausible
values. It shows the extent to which Hy may be false by showing whether the values in
the interval are very far from the null hypothesis value. Thus, it helps us to determine
whether rejection of the null hypothesis has practical importance.

To illustrate, for Example 6.7, a 95% confidence interval for nisY =+ 1.966; =
4.17 £ 1.96(.026), or (4.12, 4.22). This indicates that the difference from the moder-
ate score of 4.0 is of small magnitude. Although the P-value of P = .000000000005
provides extremely strong evidence against Hp, in practical terms the confidence inter-
val shows that the departure from the null hypothesis is minor. On the other hand, if ¥

had been 5.17 (instead of 4.17), the 95% confidence interval would equal (5.12, 5.22).

This indicates a more substantial difference from 4.0, the average response being close

to the slightly conservative category rather than the moderate category.
A confidence interval displays the set of values that are plausible parameter values.

When the P-value is not small, the confidence interval indicates whether the lack of
evidence against Hy may be due to a lack of power. A wide confidence interval con-

ning the null hypothesis value of the parameter indicates a strong possibility of a

the lack of precision of the interval estimate also
dicates why it does not make sense to accept Hy, as we discussed previously. For
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The ¢ distribution was discovered in 1908 by the statistician and chemist W, S. Gos-
set. At the time, Gosset was employed in the experimental unit of Guinness Breweries
in Dublin, Ireland. He had only small samples available for several of his analyses for
determining the best varieties of barley and hops for the brewing process. Due to com-
h pany policy forbidding the publishing of trade secrets, Gosset used the pseudonym Stu-
The confidence interval for means prescrlmtefd iriasrzzt;(::nple izes. The large-sample as- dent in articles he wrote about this result. The ¢ statistic is often called Student’s t.
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Small-Sample Confidence Interval for a Mean

For a random sample from a normal population distribution, a 95% confidence interval
P — 2.447,2.5% of the t for wis
— 6. Then, since 7025 4 : :
. B, suppose df = 6. : illustrates. By sym o ; (s_)
b lu-us‘ratﬁ T'f;biﬁe righ?—hand tail above 2.447. Figure g L{i':' li"’hen df =6, the ; Y& tosby =¥ £ 105 7
d’smbu;g; falsi 1lies. in the left-hand tail below —fo2s = ~&77 °
metry, 2.270 a

e df =n — 1 for the ¢-value

The intervals use the f,gs-value, which is the ¢ value for a right-tail probability of
.025. This is because 95% of the probability for a ¢ distribution falls between —1 25 and
fo2s. Let o denote the error probability that the confidence interval does not contain L.
For instance, for a 95% confidence interval, & = .05. A confidence interval uses the ¢-
score with tail probability «/2 in each tail. For a 9% confidence interval, for instance,
@ =01, and the appropriate f-score is # g5 for the specified df value.

Like the confidence interval in Section 5.2 for large samples, this confidence inter-
val equals the point estimate of y plus and minus a table value multiplied by the esti-
mated standard error. The only difference in the formula is the substitution of the -table
value for the normal-table value, to reflect the small sample size. The t method also

makes the additional assumption of a normal population distribution, which is needed

for small samples. In practice, the distribution is typically not normal, and we discuss
the importance of this assumption later in the section.

3
-3 -2 1943 2447
—2.447 —1.943 (;os) (tons)
(—tgs)  (=tos)

Figure 6.10 ¢ Distribution with df = 6

Example 6.8 Estimating Mean Weight Change for Anorexic Girls
for a stan
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- Example 6.4 discussed a study that compared various treatments for young girls suffer-
Ing from anorexia. The variable of interest was the change in weight from the beginning
- tothe end of the study. For the sample of 29 girls receiving the cognitive behavioral

 reatment, the changes in weight were summarized by ¥ =3.01 and 5 = 7.31 pounds.
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Elements of a { Test for a Mean
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Sampling distribution of
Gt ¥ i o
aF
when Hy is true;

P = Sum of tail probabilities

Observed ¢

Figure 6.11 Calculation of P in Testing Hy: st = jto Against Hy: jt # y1g, for Small Samples. The
P-value is the total two-tail probability beyond the observed test statistic.

5. Conclusion

Normally, we report the P-value. For a formal decision, as in the large-sample case,
reject Hy if the P-value is no greater than some fixed a-level, such as .05 or .01.

Example 6.9 Small-Sample Test for Anorexia Data

We illustrate with a ¢ test for the anorexia data. For the 29 observations, ¥ =3.01 and &7
=1.357. As in Example 6.4, one might test for no effect of treatment versus a positive
average weight change, by testing Hy: p = 0 against H,: i > 0. More commonly, in
practice, one would use the two-sided alternative H, : 1« # 0. The test statistic equals

¥—pg 301-0
Gy RITAST
precisely the same as the large-sample z statistic.
Now, for n = 29 and df = 28, t = 2.048 yields P = .025 for the one-sided al-
ternative hypothesis. Since the observed r = 2.22 > 2.048, the one-tail P-value is
P < .025, since a value farther out in the tail has a smaller tail probability. Moreover,
P > .01, since Table B indicates that r = 2.467 has a tail probability of .01. Figure
6.12 illustrates. Table B is not detailed enough to provide the exact value of P. We
could summarize the P-value for the one-sided test by reporting that .01 < P < .025.
Table B provides enough information to determine whether the one-tailed P-value is
greater than or less than .10, .05, .025, .01, and .005. If two of the tabled #-scores
bracket the observed # statistic, above and below, their tail probabilities bracket the ac-
tual tail probability. For a two-sided alternative, we double the results. For instance,
for these data we double the bounds of .01 and .025 to report .02 < P < .05.
When computer software performs the analysis, the output reports the actual P-
value rather than bounds for it. Most software reports the P-value for a two-sided al-
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small-sample two-sided inferences for a mean using the 7 distribution are quite robust
against violations of the assumption that the population distribution is normal. Even
if the population is not normally distributed, two-sided tests and confidence intervals
based on the ¢ distribution still work quite well. The P-values and confidence coeffi-
cients are fairly accurate, the accuracy being quite good when n exceeds about 15. The
test does not work so well for a one-sided test with small n when the population distri-
bution is highly skewed. There is evidence of such skewness if you see outliers in one
direction.

The results of ¢ tests and confidence intervals are not robust to violations of the ran-

dom sample assumption. The results may be completely invalid if the sample is not
random.

Computer Software and Inference for Means

We have used the ¢ distribution for small-sample inference about a mean and the normal
distribution for large-sample inference, with n = 30 being a rather arbitrary dividing
line. This is partly because the  table in this book (Table B) has df values only below
30, and for larger values the r-scores are practically identical to z-scores.

Computer software does not distinguish between the two cases. It uses the 7 distri-
bution for all cases. It has the r distribution stored in memory for all possible df values,
so it is not limited to n < 30. The advantage of using the ¢ methods is that they account
for the extra variability due to estimating o by s. Though they make the extra assump-
tion of a normal population, this is unneeded for n > 30; the sampling distribution of
Y is then approximately normal regardless of the shape of the population, by the Cen-
tral Limit Theorem (See. 4.4). Of course, when n > 30, you will get nearly identical
results if you use z-scores instead of ¢.

Significance tests that a parameter equals a particular value yq are often artificial.
It is rare that we learn much by testing a hypothesis about a single population mean.
The next chapter presents more realistic tests, involving comparisons of means for two
populations. In most applications, we learn more by constructing a confidence interval
than by performing a test. In particular, with small samples, confidence intervals are
usually wide, forcing us to recognize that estimates of parameters are imprecise.

6 Small-Sample Inference for a Proportion—The Binomial

Distribution*

The confidence interval for a population proportion 7 presented in Section 5.3 and the
significance test presented in Section 6.3 are valid for large samples. The sampling
distribution of the sample proportion 7 is then approximately normal, and one can use
z-scores in tests and confidence intervals. The closer the true parameter  is to 0 or
1 for a given sample size, the more skewed the actual sampling distribution becomes,
and the normal approximation may be poor (refer back to Figure 6.7). For instance,




