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Let αt be the coalition 2PP intended vote share at time t; here I let t index days,
with June 18 2004, the first date in my analysis (corresponding to the field date of the
first poll in my data set). Let i = 1, . . . , n index the polls available for analysis. Each
poll result is assumed to be generated as follows:

yi ∼ N(li, r2
i ) (1)

where yi is the result of poll i. Each of the n polls is generated by organization ji on
field date ti. ri is the standard error of the poll (a function of yi and the poll’s sample
size) and

li = αti
+ dji (2)

where dj is the bias of polling organization j, an unknown parameter to be estimated.
To model change in vote intentions, I use the following simple random walk model:

αt ∼ N(αt-1, x2), t = 2, . . . , T (3)

with the distribution
α1 ∼ Uniform(.4, .6) (4)

initializing the random walk (i.e., before we see any polling, I assume that coalition
support is anywhere between 40% and 60%, bracketing the historical range reported
earlier). In adopting this model I assume that on average, today’s level of coalition
support is the same as yesterday’s, save for random shocks that come from a normal
distribution with mean zero and standard deviation x.



Prior Distributions

Prior distributions are a critical component of Bayesian modeling, a formal state-
ment of the researcher’s a priori beliefs about the model parameters. Equations 3
and 4 supply priors for the αt parameters. For the house-effects parameters dj I use a
vague normal prior centered at zero,

dj ∼ N(0, d2) (5)

with d an arbitrary large constant, so that the data will dominate inferences for these
parameters. Since the dj are house-specific shifts on the scale of the observed survey
proportions, it is reasonable to posit that dj = .15 would be a ‘‘very large’’ house
effect (i.e., survey organization j is biased by 15 percentage points, on average).
Accordingly, a prior distribution that had a 95% confidence interval spanning -.15
to .15 would formalize the a priori belief that we are reasonably ignorant about the
magnitudes of house effects, but that are likely to be no larger than plus or minus
15 percentage points. In turn, this corresponds to d2 = (.15/2)2 = .005625. That is,
given the scale of the data being modeled, a vague normal prior can be specified with
any d > .075.

A prior distribution over x completes the specification of the model: I use a uniform
prior,

f (x) =
{

100 if 0 < x < .01
0 otherwise

(6)

That is, before seeing data, I presume that day-to-day changes are not massive, with
the standard deviation of the daily changes no larger than one percentage point; even
at this maximum prior value of x = .01 (one percentage point), the implication is that
95% of the daily changes in the αt are no larger than plus or minus two percentage
points. This seems a plausible constraint, allowing the occasional large day-to-day
shift in voter sentiment, but consistent with the idea that on most days, the change in
underlying voter sentiment is probably not this large.

Bayesian Inference via Markov chain Monte Carlo

Equations 1, 2 and 3 define the statistical model used for pooling and smoothing
the polls, as well as estimating house effects. The unknown parameters are (1) αt,
the Coalition’s vote share on day t, t = 1, . . . , T - 1; (2) dji , the house effect of polling
organization ji, where j indexes the set of 5 polling organizations analyzed here; (3)
x2, a variance parameter tapping the magnitude of day-to-day variability in the αt.

Inference for these parameters is via Bayesian methods, meaning that we compute
the posterior density of the model parameters, conditional on the observed data,
denoted as p(H|y), where, in this case, H is the set of the unknown parameters listed
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above, and y are the observed data (poll estimates and sample sizes). To compute
the posterior density I rely on Markov chain Monte Carlo (MCMC) techniques, and in
particular, the workhorse MCMC technique, Gibbs sampling. MCMC exploits two ideas

1. the Monte Carlo principle. If h is a random variable (e.g., a parameter) then
anything we wish to know about h can be ascertained by sampling many times
from its probability density p(h). The sampled values of h can be stored,
summarized or plotted to produce estimates of the mean of h, confidence
intervals, etc. The quality of the estimates produced by this sampling approach
is limited only by the number of samples one’s computers can generate, store
and summarize (and the researcher’s patience).

2. joint distributions are completely characterized by conditional distributions.
Suppose a model has several parameters, H = {h1, . . . , hk}which have the joint
posterior density p(H|y). Then the following iterative algorithm can be used for
sampling from the joint posterior density p(H|y). Let H(p) be the values of H
sampled at iteration p. Then H(p+1) can be generated as follows:

1. sample h(p+1)
1 from f (h1|H(p)

-1 , y)
2. sample h(p+1)

2 from f (h2|H(p)
-2 , y)

...
...

j. sample h(p+1)
j from f (hj|H(p)

-j , y)

This scheme ‘‘works’’ in a wide variety of conditions (e.g., Tierney 1996) and,
remarkably, irrespective of where the iterative scheme is initialized (i.e., the
value of H(0)); the key result is as the number of iterations increases (t → L)
the samples can be validly regarded as samples from the joint posterior density
p(H|y).

Conditional Distributions for the Gibbs Sampler

Implementing this scheme for the model used here requires knowing the forms of
the conditional distributions in the iterative scheme defined above. To derive these
conditional distributions, it is helpful to recognize that if a statistical model can be
expressed as a directed acyclic graph G, the conditional distribution of node hj in the
graph is

f (hj|G-hj
) ∝ f (hj|parents[hj]) ~∏

w∈children[hj]

f (w|parents[w]), (7)
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where G-hj
stands for all nodes in the graph G other than hj. See Spiegelhalter, Thomas

and Best (1996) and Spiegelhalter and Lauritzen (1990) for defintions and proofs of
these propositions.

α1 αt-1 αt αt+1 αT
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Figure 1: Directed Acyclic Graph (DAG) Corresponding to equations 1, 2 and 3. Arrows
run from parent nodes to child nodes in the DAG.

The directed acyclic graph for the model in equations 1, 2 and 3 is shown in
Figure 1. The graph is defined for an arbitrary three day sequence, with a poll result yi

available on day t, but not on days t -1 or t +1. Using a conventional notation, unknown
parameters are represented as circles, and rectangles denote fixed or deterministic
quantities. Parent-child relations are denoted by arrows: e.g., αt+1 is a child of αt, αt

is a parent of yi, as are dj and r2
t , and x2 is a parent of α2, . . . , αT .

Given these parent-child relationships, and the result in equation 7, we can now
proceed to derive the conditional distributions for the Gibbs sampler. Most of the
relevant distributions are normal distributions (e.g., see equations 1 and 3). The
following lemma, a standard result in Bayesian statistics, provides a result on normal
distributions that will be used repeatedly in the derivations below:

Lemma 1 If z ∼ N(l, r2) and l ∼ N(a, b2), then l|z ∼ N(~a,
~
b

2
), where

~a =
[ z

r2
+

a
b2

] [ 1
r2

+
1
b2

]-1

4



and
~
b =

[
1
r2

+
1
b2

]-1

Proof: Since z and l have normal distributions,

f (z) =
1√

2pr2
exp

[
-
(z - l)2

2r2

]
(8)

f (l) =
1√

2pb2
exp

[
-
(l - a)2

2b2

]
(9)

Via Bayes Rule,

f (l|z) ∝ f (z)~ f (l)

∝ exp
[

-
(z - l)2

2r2

]
exp

[
-
(l - a)2

2b2

]
= exp

[
-
(z - l)2

2r2
-

(l - a)2

2b2

]
= exp

[
-1

2 r2 b2

[
(z - l)2b2 + (l - a)2r2

]]
= exp

[
-1

2 r2 b2

(
z2b2 + l2b2 - 2zlb2 + l2r2 + a2r2 - 2lar2

)]
∝ exp

[
-1

2 r2 b2

[
l2(b2 + r2) - 2l(zb2 + ar2)

]]
= exp

[
-1
2

[
l2

(
1
b2

+
1
r2

)
- 2l

( z
r2

+
a

b2

)]]
= exp

[
-1
2

(
1
b2

+
1
r2

)[
l2 - 2l

z
r2 + a

b2

1
b2 + 1

r2

]]
∝ exp

[
-1
2

(
1
b2

+
1
r2

)(
l -

z
r2 + a

b2

1
b2 + 1

r2

)2
]

(i.e., completing the square)

= exp

[
-(l - ~a)2

2
~
b

2

]

which is proportional to a normal distribution with mean ~a and variance
~
b

2
. Multiplying

by the normalizing constant (2p
~
b

2
)-1/2 gives the normal distribution N(~a,

~
b

2
). �

One of the results of the lemma has a simple interpretation: a normal prior
distribution over a parameter l, when multiplied by a normal likelihood for some data
z yields a normal posterior density f (l|z) with mean equal to the precision-weighted
average of the prior and the posterior.
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With these results at hand, the conditional distributions that drive the Gibbs
sampler are:

1. f (αt|G-αt ). Via equation 3, the parents of αt are αt-1 and x2. The children of αt

are (1) αt+1 with x2 appearing again as a parent (again, see equation 3) and (2)
yi, with co-parents dji and r2

i (equation 1). Equation 7 shows that the conditional
distribution for αt is proportional to the product of the normal distributions in
equations 3 (one for αt and another for αt+1) and equation 1. Application of the
lemma shows that the conditional distribution for αt is a normal distribution
with mean [

yi - dji

r2
i

+
αt-1 + αt+1

x2

] [
1
r2

i

+
2

x2

]-1

and variance [
1
r2

i

+
2

x2

]-1

.

The following special cases warrant elaboration:

(a) No surveys on day t. Consider a sequence of three days (t - 1, t, t + 1) without
any survey data available on day t. In this case the conditional distribution
for αt is simply the product of the normal distribution for αt and the normal
distribution for the child node αt+1. Via the lemma,

αt|G-αt ∼ N
(

αt-1 + αt+1

2
,

x2

2

)
i.e, absent polling data, the model linearly interpolates between temporally
adjacent observations.

(b) Multiple surveys on one day. It is also possible for multiple surveys to be
available on any single day. Letting s index days, define Ps = {i : ti = s} as
the subset of surveys with field date s. All yi, i ∈ Ps are children of αs, as is
αs+1. Repeated application of the lemma shows the conditional distribution
of αs to be a normal distribution with mean

[(∑
i∈Ps

yi - dji

r2
i

)
+

αs-1 + αs+1

x2

]
·

 1∑
i∈Ps

r2
i

+
2

x2


-1

and variance  1∑
i∈Ps

r2
i

+
2

x2


-1

.
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Note that the effect of multiple polls is to relatively down-weight αt-1 in
coming up with the current estimate of αt, net of the effects of the house-
effect parameters. In addition, more poll information generates more
precision (smaller variances in the conditional distribution for αt); e.g.,
compare the variance term obtained for the case of multiple polls with that
of one poll or no polls.

(c) The conditional distribution for α1 (the first day). The conditional distri-
bution for α1 is different from the conditional distributions for the other
αt, t > 1. The parent of α1 is not αt-1, since there is no ‘‘day zero’’. Rather,
the uniform prior distribution for α1 (equation 4) serves as its parent. Since
there is also a poll available for t = 1, the conditional distribution of α1 is a
normal distribution with mean[

y1 - dj1

r2
1

+
α2

x2

]
·
[

1
r2

1
+

1
x2

]-1

and variance [
1
r2

1
+

1
x2

]-1

,

truncated to the interval (.4, .6).

2. f (dj|G-dj
). The parent distribution of dj is simply its prior, dj ∼ N(0, d2) (introduced

above as equation 5). The children of dj are all the poll estimates yi published by
polling organization j. Letting k index polling organizations, define Pk = {i : ji =
k} as the set of polls published by polling organization k. Then via equation 7
and applying the lemma, dk has a conditional distribution that is normal, with
mean ∑

i∈Pk

yi - αti

r2
i

 ·

 1∑
i∈Pk

r2
i

+
1
d2


-1

and variance  1∑
i∈Pk

r2
i

+
1
d2


-1

.

3. f (x2|G-x2). For tractability, I work with s = g(x) = x-2; conversely, x =
g-1(s) = s-1/2. The uniform prior over x in equation 6 implies the restriction
that x2 < .0001 and in turn, the restriction that s > 10, 000. Moreover, using
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standard results on transformations of random variables (e.g., Gelman et al.
2004, 21), the uniform prior on x implies the following prior for s:

f (s) =

∣∣∣∣∂x

∂s

∣∣∣∣ fx
[
g-1(s)

]
=

1
2

s-3/2p(s),

where p(s) = 100 if s > 10, 000 and 0 otherwise, and so

f (s) ∝ s-3/2, s > 10, 000.

The children of s are simply the children of x2, the αt parameters, t = 2, . . . , T .
Thus, using the general formulation in equation 7, the conditional distribution
of s is

f (s|G-s) ∝ s-3/2
T∏

t=2

f (αt; αt-1, s) I(s > 10, 000)

= s-3/2
T∏

t=2

1√
2px2

exp
[

-(αt - αt-1)2

2x2

]
I(s > 10, 000)

= s-3/2
T∏

t=2

s1/2

√
2p

exp
[

-s
1
2

(αt - αt-1)2

]
I(s > 10, 000)

∝ s(T -4)/2 exp

[
-s

1
2

T∑
t=2

(αt - αt-1)2

]
I(s > 10, 000)

which is a Gamma distribution over s with parameters (T - 4)/2 and 1
2

∑T
t=2(αt -

αt-1)2, and where I() is an indicator function, evaluating to one if its argument
is true, and zero otherwise (i.e., constraining to density to have support only
where s > 10, 000). The sampled s can be simply transformed back into x (i.e.,
x = g-1(s) = s-1/2, since that is the scale on which we wish to perform inference
(i.e., prior beliefs about the magnitudes of day-to-day movements in αt were
formulated on the scale of the standard deviation of those movements, x, not
the inverse of the variance of the shocks s).

The posterior density of the x is not discussed at great length in the paper. Figure 2
shows the posterior density of x, and the uniform prior (dotted line). The posterior
has the usual χ2 type skew one associates with a variance (or standard deviation)
parameter, and is quite different from the prior. Quite clearly, given the model, the
data are informative about this parameter.
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Figure 2: Posterior and Prior Density of x.
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Implementation

I use JAGS, a free, open-source program for Bayesian analysis via Gibbs sampling
very similar to BUGS. The JAGS commands needed to perform the analysis described
above are extremely simple:

model{
## measurement model
for(i in 1:NPOLLS){

mu[i] <- house[org[i]] + alpha[date[i]]
y[i] ~ dnorm(mu[i],prec[i])

}

## transition model (aka random walk prior)
for(i in 2:NPERIODS){

mu.alpha[i] <- alpha[i-1]
alpha[i] ~ dnorm(mu.alpha[i],tau)

}

## priors
tau <- 1/pow(sigma,2) ## deterministic transform to precision
sigma ~ dunif(0,.01) ## uniform prior on standard deviation

alpha[1] ~ dunif(.4,.6) ## initialization of daily track

for(i in 1:5){ ## vague normal priors for house effects
house[i] ~ dnorm(0,.01)

}

}

R files supplied in this replication archive read the raw data read.r. The R files
TwoPartyPreferred.r and firstPrefs.r. run the JAGS jobs, for both the two-party
preferred daily track and the first preferences daily track, respectively. Note that the
file jags.cmd specifies a 1,000 iteration burn-in before a 25,000 iteration run, for
testing purposes; note that the paper uses a 1,000,000 iteration burn-in followed by
a 25,000,000 iteration run.

Some of the R files that generate plots may make reference to family=dinfamily;
comment out this command, since it is a direction to use some proprietary typefaces I
have installed on my machine and will generate an error on your machine.
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